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Dental microwear texture analysis shows within-
species diet variability in fossil hominins
Robert S. Scott1*, Peter S. Ungar1*, Torbjorn S. Bergstrom2, Christopher A. Brown2, Frederick E. Grine3,
Mark F. Teaford4 & Alan Walker5

Reconstructing the diets of extinct hominins is essential to under-
standing the paleobiology and evolutionary history of our lineage.
Dental microwear, the study of microscopic tooth-wear resulting
from use1–4, provides direct evidence of what an individual ate in
the past. Unfortunately, established methods5–10 of studying
microwear are plagued with low repeatability and high observer
error11. Here we apply an objective, repeatable approach for
studying three-dimensional microwear surface texture to extinct
South African hominins. Scanning confocal microscopy12,13

together with scale-sensitive fractal analysis14–19 are used to
characterize the complexity and anisotropy of microwear. Results
for living primates show that this approach can distinguish
among diets characterized by different fracture properties.
When applied to hominins20, microwear texture analysis indicates
that Australopithecus africanus microwear is more anisotropic,
but also more variable in anisotropy than Paranthropus robustus.
This latter species has more complex microwear textures, but is
also more variable in complexity than A. africanus. This suggests
that A. africanus ate more tough foods and P. robustus consumed
more hard and brittle items, but that both had variable and
overlapping diets.
To understand the relationships between diet and dental micro-

wear, we first examined living animals with different diets. Cebus
apella, for example, eats more fruit flesh and hard, brittle seeds2,
whereas Alouatta palliata consumes more leaves and other tough
items22,23. We measured microwear complexity by area–scale fractal
complexity (Asfc) (Fig. 1). The Asfc is significantly higher
(x2 ¼ 36.97, P , 0.0001; Kruskal-Wallis test) and more variable
(F ¼ 81.65, P , 0.0001; F-test) for C. apella (13.99 ^ 11.034, all
values are mean ^ s.d. unless otherwise stated) than for A. palliata
(0.98 ^ 1.221). The anisotropy variable, exact proportion length–
scale anisotropy of relief (epLsar) (calculated with a scale observation
of 1.8 mm, epLsar1.8), quantifies the degree of directionality in surface
roughness at a fine scale. The anisotropy is significantly higher
(x2 ¼ 16.32, P , 0.0001; Kruskal-Wallis test) and more variable
(F ¼ 2.38, P , 0.05) for A. palliata (epLsar1.8 0.0052 ^ 0.00215)
than for C. apella (0.003 ^ 0.0014) (Fig. 2a, b). These results suggest
that hard, brittle foods associated with pits in microwear feature
analyses9,10,24 leave a more complex microwear texture (.Asfc),
whereas tough foods associated with scratches in microwear feature
analyses9,10,24 produce a more anisotropic microwear texture
(.Lsar).
Fossil hominin results indicate that P. robustus (Asfc 4.29 ^ 2.150)

has microwear textures more complex (x2 ¼ 8.17, P , 0.005;
Kruskal-Wallis test) and more variable in complexity (F ¼ 16.82,

P , 0.0005) than A. africanus (Asfc 1.686 ^ 0.52) (Fig. 2c, d). These
results are consistent with the hypothesis that P. robustus incorpo-
rated more hard and brittle foods in its diet20,25. However, some
overlap in Asfc for the hominins (Fig. 3b) suggests that P. robustus
was unlikely to have been a specialized hard-object feeder. It is more

LETTERS

Figure 1 | Scale-sensitive fractal analysis. a–e, Relative area is calculated by
dividing the area of a surface, calculated using triangles of a given scale in a
virtual tiling algorithm (a, b, c), by the projected area of the surface (d).
Relative area can then be plotted against scale in a log–log plot (e). Asfc30 is a
scale-sensitive measure of roughness and is the slope of the steepest part of
the curve fitted to the plot of relative area over scale, multiplied by 21,000.
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likely that hard, brittle foods were an occasional but important part
of the diet. Previous studies have emphasized average differences
between species rather than overlap, because low repeatability11

associated with observer error made assessments of within-species
variability difficult.
In contrast, the microwear textures of Australopithecus africanus

(epLsar1.8 0.0045 ^ 0.00163) show greater anisotropy (x2 ¼ 3.84,
P ¼ 0.05; Kruskal-Wallis test) and epLsar variability (F ¼ 7.38,
P , 0.01) than P. robustus (epLsar1.8 0.0028 ^ 0.00060) (Fig. 2c,
d). These data suggest a tougher diet on average for A. africanus
compared with P. robustus, but one that is also more variable in its
toughness.
Microwear texture analysis is a repeatable alternative to methods

that rely on subjective feature counts and measurements on two-
dimensional photomicrographs generated using a scanning electron
microscope (SEM). Variables including Asfc and Lsar, which are
based on scale-sensitive fractal analysis, can distinguish microwear
found on molars of extant primates with contrasting diets (Fig. 3a).
These variables also distinguish the microwear found on molars of
extinct South African hominins (Fig. 3b). The reduction in observer
error and the possibility of using larger samples dramatically
improves estimations of microwear variability, and creates a new
opportunity to model diet and subsistence variability in both extinct
species and bioarchaeological samples.
The evidence presented here with respect to South African

hominin molar microwear affirms some differences between
P. robustus and A. africanus. For instance, wear fabrics of P. robustus
are more complex and less anisotropic than those of A. africanus.
These differences suggest a diet composed of more hard and brittle
foods for P. robustus and more tough foods for A. africanus20,25.
On the other hand, the contrasts in microwear texture variability

found here offer new insights. The greater variation in complexity for
P. robustus and in anisotropy for A. africanus suggests that these
species altered different components of their diet, but that there was

probably substantial overlap in the fracture properties of their
preferred foods. Thus, the clear differences between A. africanus
and P. robustusmicrowear may relate, in part, to differences in critical
dietary resources consumed only periodically during the year.
The study of dietary variability in fossil hominins has until now

been problematic, given small sample sizes, subjective identification
of individual features and observer error11. The overlap and varia-
bility identified here for Paranthropus and Australopithecus was not
apparent from earlier studies20,25. This suggests that early hominin
diet differences might relate more to microhabitat, seasonality or
fall-back food choice than to oversimplified, dichotomous food
preferences26–28.

METHODS
The samples of the extant primates included high-resolution epoxy replicas of
mandibular second molars of the New World monkeys, Cebus apella (n ¼ 35)
and Alouatta palliata (n ¼ 25). Specimens are accessioned at the US National
Museum of Natural History and provenience is known only generally. C. apella
specimens were collected in central and eastern Brazil and A. palliata specimens
were collected in Panama (from Darien to Bocas del Toro). The fossil specimens
were the same as those considered by Grine25, including Paranthropus robustus
fromSwartkrans (,1.9–1.5Myr ago; n ¼ 9) andAustralopithecus africanus from
Sterkfontein (,2.8–2.4Myr ago; n ¼ 10).

Specimens were examined using a Sensofar Plmwhite-light scanning confocal
imaging profiler with a £ 100 objective12,13. Four adjacent areas on Facet 9
(ref. 29) of the specimens were scanned, sampling a total area of a 276 £ 204mm.
These were then levelled using SolarMap Universal, producing digital elevation
models with a vertical sampling interval of 0.005mm and a lateral (x and y)
sampling interval of 0.18 mm.

The resulting data were analysed using scale-sensitive fractal analysis14–19, an
objective and repeatable approach to quantifying the complexity and direction-
ality of surface roughness and their scales. Scale-sensitive fractal analysis is based
on the idea that the apparent area of a rough surface, and the length of a profile
froma rough surface, changewith the scale of observation. Thus, surface textures
appear smooth at sufficiently coarse scales, and roughwith increasing resolution

Figure 2 | Microwear texture
analyses. a–d, Meshed axonometrics
of digital elevation models (left),
bivariate plots of relative area versus
scale (middle), and rosette plots of
normalized relative length at 1.8mm by
orientation (right) for scans on
representative specimens of Alouatta
palliata (NMNH 543117) (a), Cebus
apella (NMNH 518433) (b),
Australopithecus africanus (Sts 61) (c),
and Paranthropus robustus (SK 16) (d).
Steeper best-fit lines for the steepest
order of magnitude on the relative
area–scale curves evince higher Asfc
values, indicating greater complexity
(for example, b and d). More clumped
rosettes (for example, a and c) have
higher values of epLsar, indicating
greater anisotropy of the wear fabric.
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at sufficiently fine scales. Changes in areas with scale are used to characterize
complexity. These are calculated as changes in relative area, defined as the
calculated surface area at a particular scale (Fig. 1a–c) divided by planometric
area (Fig. 1d). The slope of the steepest part of the curve fitted to a log–log plot of
relative area over some scale range (multiplied by 21,000) (Figs 1e and 2) is
termed area–scale fractal complexity (Asfc)30. For each scan studied here, 560
relative areas were calculated for scales from ,5,300mm2 to ,0.17mm2 using
Kfrax (http://www.surfract.com). Asfc was calculated for each scan over one
order of magnitude, and mean Asfc was calculated for each specimen.

Relative lengths of depth profiles differ with orientation when the roughness
of a surface has directionality (that is, when the surface is anisotropic).We define
relative lengths at given orientations as vectors. Thirty-six vectors were calcu-
lated at 58 intervals for each scale and then normalized. For a given scale,
normalized vector lengths or ‘exact proportion’ relLa are equal to (relLa 2 1)/
S(relLa 2 1), where relL is relative length and a is the orientation of the length
scale analysis. This normalization is functionally equivalent to normalizing by
the mean of relL when the number of orientations calculated is constant across
the comparison. Longer normalized relative length vectors in the rosette plots
generally correspond tomore wear features normal to the direction of the vector.

Normalized relative length vectors can be displayed graphically in a rosette
diagram (Fig. 2). The length of the mean vector is a new measure of surface
anisotropy called exact proportion length–scale anisotropy of relief (epLsar).
epLsar was calculated for each scan using Kfrax with a scale of observation of
1.8mm, and mean epLsar was calculated for each specimen.

Descriptive and inferential statistics were computed using SAS 9.1.
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Figure 3 | Anisotropy and complexity. a, b, Bivariate plots of epLsar1.8

versus Asfc for Alouatta palliata and Cebus apella (a), and Australopithecus
africanus andParanthropus robustus (b). The values plotted are means based
on the four scans with adjoining edges from each specimen.
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