Human GH pulsatility: An ensemble property regulated by age and gender

J.D. Veldhuis¹ and C.Y. Bowers²

¹Division of Endocrinology and Metabolism, Department of Internal Medicine, Mayo Medical and Graduate Schools of Medicine, General Clinical Research Center, Mayo Clinic, Rochester, MN, ²Department of Internal Medicine, Division of Endocrinology and Metabolism, Tulane Medical School, New Orleans, LA, USA

ABSTRACT. Age and gender impact the full repertoire of neurohormone systems, including most prominently the somatotropic, gonadotropic and lactotropic axes. For example, daily GH production is approximately 2-fold higher in young women than men and varies by 20-fold by sexual developmental status and age. Deconvolution estimates of 24-h GH secretion rates exceed 1200 $\mu g/m^2$ in adolescents and fall below 60 $\mu g/m^2$ in aged individuals. The present overview highlights plausible factors driving such lifetime variations in GH availability, i.e., estrogen, aromatizable androgen, hypothalamic peptides and negative feedback by GH and IGF-I.

In view of the daunting complexity of potential neuromodulatory signals, we underline the utility of conceptualizing a simplified three-peptide regulatory ensemble of GHRH, GHRP (ghrelin) and somatostatin. The foregoing signals act as individual and conjoint mediators of adaptive GH control. Regulation is enforced at 3-fold complementary time scales, which embrace pulsatile (burst-like), entropic (orderly) and 24-h rhythmic (nycthemeral) modes of GH release. This unifying platform offers a convergent perspective of multivalent control of GH outflow.

(J. Endocrinol. Invest. 26: 799-813, 2003) ©2003, Editrice Kurtis

DYNAMIC (TIME-SENSITIVE) MODES OF HYPOTHALAMIC-PITUITARY REGULATION

Endocrine glands typically communicate with remote target glands via intermittent signal exchange (1). In the case of the growth-promoting and metabolism-modulating somatotropic axis, core signals include multiple neuropeptides released by the hypothalamus, GH secreted by the anterior pituitary gland, blood-borne metabolites, systemic hormones, IGF-I and cognate binding proteins synthesized in the central nervous system (CNS), adenohypophysis and a host of somatic cells (2). From a heuristic point of view, fluctuating GH concentrations exhibit pulsatile (briefly episodic), low-entropic (feedback-enforced orderly) and 24-h rhythmic patterns (Fig. 1). GH release is nycthe-

meral, but not unequivocally circadian, i.e., Zeitgeber phase-setting, free-running under temporal isolation and temperature-compensated in poikilothermic species (3). The term nycthemeral rhythmicity is more appropriate for diurnally varying GH secretion until definitive circadian data become available (3, 4). Below, we discuss the pulsatile and entropic modes of regulated GH release.

Feedback and feedforward control

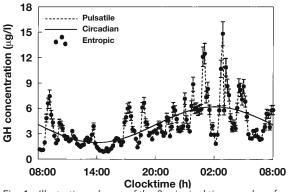
An emergent concept in neuroendocrine systems is that homeostasis is achieved via incremental feedback and feedforward signaling (2, 5-8). Interglandular signal exchange embraces: a) variable time delays inherent in hormone synthesis, secretion, delivery and action; b) non-linear dose-response properties; c) stochastic (random) factors of both biological and technical origin; d) simultaneous modulation by external (e.g. nutrition) and internal (e.g. suprachiasmatic nuclear) signals (9, 10). Figure 2 illustrates some stochastic and deterministic mechanisms that mediate homeostasis. Mathematical formalism aids in quantitating such time-sensitive and signal-adaptive dynamics, which are difficult to visualize intuitively (5, 6, 11, 12).

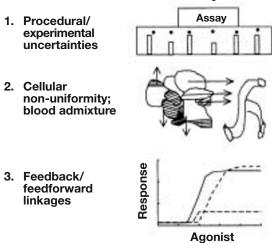
Key-words: Somatotropin, sex steroid, aging.

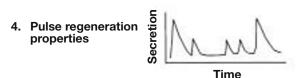
Correspondence: Dr. Johannes D. Veldhuis, Division of Endocrinology and Metabolism, Department of Internal Medicine, Mayo Medical and Graduate Schools of Medicine, General Clinical Research Center, Mayo Clinic. Rochester. MN 55905. U.S.A.

E-mail: veldhuis.johannes@mayo.edu

Accepted February 11, 2003.




Fig. 1 - Illustrative schema of the 3 principal time-modes of regulated GH secretion, i.e., pulsatile, entropic (feedback-sensitive) and nycthemeral (circadian-like). Composite control is endowed by time-delayed, non-linear, dose-dependent and stochastically modulated feedback and feedforward signal exchange (5, 6).


Episodic or pulsatile GH release

Pulsatile GH secretion evolves as a succession of randomly timed and variable-amplitude volleys composed of individual discrete secretory bursts (13-17). Nycthemeral factors drive 24-h variations in GH pulse amplitude and (in lesser measure) frequency (13, 15, 16, 18, 19). Fasting and sleep markedly amplify GH peak height and elevate event frequency moderately consistent with preponderantly amplitude-dependent control of this axis (14, 20).

Secretory-burst mass is a derived estimate of the unobserved amount of hormone secreted into the bloodstream per unit distribution volume within a given pulse (e.g. µg/l GH) (1, 21, 22). The mass of GH released per burst fluctuates across the day and night from as little as 0.3-1.0 µg in the awake, calorically replete older adult to as much as 80-130 µg in the asleep, fasting neonate and adolescent (15, 17, 23-28). In contradistinction, GH pulse frequency averages 14 to 18 prominent events/day independently of gender, hormonal milieu, physical fitness, age or developmental status (15, 16, 18, 19, 25, 29, 30). Thus, the absolute range of daily GH secretion per unit surface area (m²) is $<60 \mu g$ in the elderly and $>1200 \mu g$ in adolescents (assuming a 7% GH distribution volume) (2). In the latter regard, puberty amplifies the mass of GH secreted within each pulse by 3- to 11-fold (15, 17) (Fig. 3). Estrogen, aromatizable androgen, physical fitness and systemic IGF-I depletion likewise augment GH secretory-burst amplitude by several fold (19, 25, 29-36). Indeed, all primary secretagogues drive secretory-burst GH size selectively (37-41).

A Stochastic elements in a neuroendocrine feedback system

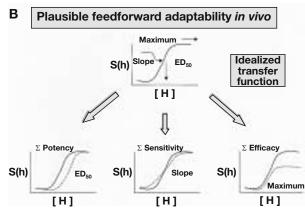


Fig. 2 - A) Notion of stochastic (apparently random) contributions to serial hormone measurements. B) Illustrative feedforward adaptability of an implicit agonist (effector)-response (secretion) interface. Dose-response modulation includes adjustment of agonist potency and efficacy as well as target-cell sensitivity.

GH kinetics

The plasma half-life of GH averages 14-18 min (extreme range 8-25 min), and is unrelated to gender, stage of the menstrual cycle, androgen or estrogen status, pubertal stage or age (42-45). On the other hand, short-term estradiol repletion increases the distribution volume and metabolic clearance rate (MCR) of GH by approximately 30% withinsubject [recalculated from data in (46)]. The indistin-

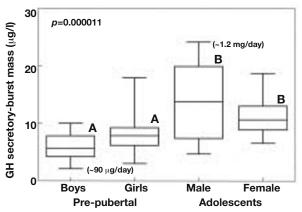


Fig. 3 - Pubertal augmentation of GH secretory-burst mass (µg/l). The latter was assessed by deconvolution analysis of serum GH concentration time series collected at 5-min intervals for 12 h and assayed by ultrasensitive immunochemiluminesce assay (17). The extreme range of GH secretion rates is noted in parentheses.

guishable half-life in estradiol-deficient and replete individuals signifies that estrogen does not control the rate of exit of GH from the circulation.

The estradiol-induced increase in GH distribution space implies that estrogen stimulates (totalbody) GH secretion by up to 1.3-fold more than would be inferable from concentration measurements (47). This effect is small compared with the 1.8- to 2.2-fold augmentation of 24-h GH secretion. Visceral obesity mimics the effects of estrogen, and for unknown reasons accelerates the removal of GH from plasma (thus reducing GH half-life) (42-44, 48, 49). Whether GH-binding protein concentrations in tissue fluids determines physiological efflux of GH from plasma is not known (42, 50-52). However, GH receptors do not greatly influence GH kinetics, inasmuch as administration of a 3000-fold excess of a selective GH-receptor antagonist peptide (pegvisomant) does not alter any of 5 independent measures of GH elimination in humans (52).

Analytical issues

Statistical reconstruction of underlying GH secretory-burst waveform (and, hence, mass) is now possible under several assumptions. The family of estimation procedures is termed deconvolution analysis (22, 53). One analytical approach entails quantitating burst-like episodes of time-delimited GH secretion (21, 54). This model predicts that approximately 10¹⁵ molecules (10 nmol) of GH are released into the circulation in a single burst. Based on statistical mechanics, one would expect secretory rates for this number of molecules to vary

smoothly, so that initial (granule-prestored) distribution of release rates would be approximately Gaussian over time (Fig. 4). Direct cavernous-vein sampling in the human and sheep indicate that this a priori approximation is realistic (55, 56). Such reasoning applies more strictly to purely random (stochastic) processes, such as the discharge of readily releasable hormone molecules by a topographically dispersed set of cells (57). Time-delayed de novo biosynthesis of GH, encapsulation of protein molecules into exocytotic secretory vesicles, vectoral granule movement to the membrane, and docking, fusion and discharge of GH contents confer deterministic skewness to the evolving secretory burst (11, 58). Thus, more recent representations of a secretory event predict a variably asymmetric (right tail-extended) burst, which can be represented by the generalized y-density function (11, 57, 58). The Gaussian model provides a practical approximation (and de facto mathematical subset) of the generalized γ density under less frequent sampling conditions.

Available estimates indicate that 50% of an underlying GH secretory burst unfolds over 8 to 14 min, unlike the 60-100 min duration of a resultant GH concentration peak. Prolongation of the pulse in the circulation is due to delayed elimination of secreted GH molecules. Thus, precise quantitation of true GH secretory-burst shape would require successive measurements every 1 to 3 min (e.g. 5 or more observations per event) (22, 54, 59). This concept is illustrated by the analysis of 30-sec or 5-min sampling protocols in healthy young men or patients with acromegaly, respectively (13, 14, 60).

Deconvolution analysis of stimulated plasma hormone concentration peak

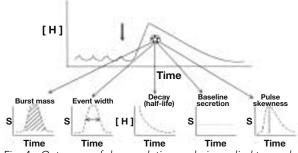


Fig. 4 - Outcomes of deconvolution analysis applied to an observed hormone concentration peak (top center). Deconvolution quantitates the apparent mass (bottom, left-to-right) and width (duration, min) of the underlying secretory burst; exponential decay (elimination) of secreted molecules; baseline (time-invariant, nonpulsatile) secretion; and variable-waveform shape.

Pattern regularity

On a more rapid time scale of minutes, neurohormone release is controlled by repeated incremental, deterministic adjustments enforced by physiological feedforward and feedback with superimposed stochastic effects (60, 61). This perspective applies to any adaptive network, such as the somatotropic, gonadotropic or corticotropic axis that maintains mean homeostasis (6, 12, 62-64). As shown in Figure 5, regularity or orderliness on a more subtle (sample-bysample) time scale can be quantitated inter alia by the approximate entropy (ApEn) statistic (61, 65, 66). According to concepts of ensemble or network control, adaptively interlinked systems maintain quantifiable subpattern regularity or orderliness (low process randomness). Loss or gain of integrative control respectively disrupts or enhances regularity (25, 62, 67). Less regular patterns of hormone secretion by pituitary tumors exemplify this principle, wherein tumoral autonomy blunts feedback and feedforward (corrective) adjustments. Thus, quantitation by ApEn (randomness score) identifies marked secretory disorderliness of GH, ACTH, prolactin and insulin release in acromegaly, Cushing's disease, prolactinoma and aging, respectively (60, 68-71). Validation of ApEn applications to short data series indicates that 12-24 consecutive measurements of serum GH (at midnight) and ACTH (in the morning) concentrations are sufficient to discriminate tumoral from physiological sample-by-sample regularity with >90% sensitivity and >90% specificity (62).

Factors driving altered feedback-dependent regularity

Gender, age and pubertal status determine the quantifiable orderliness (ApEn) of GH release (34, 35, 61). Secretory irregularity is greater in adolescent girls and young or older women than in male counterparts of comparable ages (17, 72). Such distinc-

Approximate entropy concept

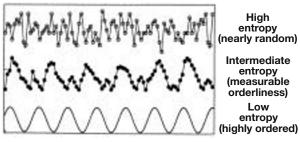


Fig. 5 - Intuitive concept of subpattern regularity in a hormone profile, as quantitated by the approximate entropy (ApEn) statistic.

tions denote unequal within-axis feedback control by gender. Within gender, pattern reproducibility further depends upon sex steroid availability (25, 34). For example, a longitudinal appraisal of GH ApEn transpubertally in healthy boys documented that marked deterioration of regularity emerges 0-4 months before maximal linear height velocity is attained (73). Surgical castration and GnRH analoginduced gonadotropin downregulation in the juvenile rat impose graded distinctions in GH secretory regularity in the adult animal, thereby demonstrating that gonadal sex-steroid hormones imprint feedback control (74). However, feedback and feedforward interactions in the GH axis are by no means fixed at sexual maturity in the human or rodent. Estrogen and testosterone (but not 5α -dihydrotestosterone or stanozolol) administration in children and adults will elevate GH ApEn (induce greater secretory randomness), which signifies prominent adaptations in feedback and/or feedforward control (18, 19, 25, 32, 75). Analogously, a single sc injection of testosterone in the adult ovariectomized rat will induce a masculine-like pattern of more regular GH release (lower ApEn) within 48 h (76).

In the more subtle context of healthy aging, regularity estimates unveil attenuation of the orderliness of each of GH, LH, ACTH and insulin in men and women (2, 40, 64, 69, 77-79). Assessment of the joint synchrony (cross-ApEn) of coupled hormone releases further establishes aging-related deterioration of feedback-linked hormone release, i.e., decreased coordinate LH-FSH, LH-testosterone, LH-prolactin, ACTH-cortisol and glucose-insulin secretory patterns (64, 69, 70, 79-84). Certain bodycompositional correlates, such as visceral adiposity, also forecast feedback disruption (elevated ApEn) within the GH axis at any given range (40, 48, 85).

Validation of feedback quantitation

The emergent precept that greater subpattern randomness (orderliness loss) signifies alterations in regulatory linkages in a coupled network has been validated by way of: a) mathematically reductionistic (coupled stochastic) numerical systems; b) clinical interventional paradigms, comprising: 1) fixed feedforward enforced by iv infusion of GHRH, GHRP-2 and GnRH, 2) withdrawal of feedback signals to GH, ACTH and LH output by pharmacological depletion of downstream products, IGF-I, cortisol and testosterone, and 3) accentuation of feedback by constant iv infusion of testosterone, IGF-I or somatostatin; c) formalized models of ensemble neuroendocrine control (5, 11, 12, 65-67, 86-90); d) demonstrated reversibility of secretory irregularity by surgical cure of autonomous endocrine tumors (above).

TRIPEPTIDYL MODEL OF GH NEUROREGULATION

Multiple effectors modulate GH secretion singly and interactively. Important regulatory inputs include (non-exclusively) direct somatotrope inhibition by systemic free fatty acids; hypothalamic signaling via the 3 pivotal neuropeptides, GHRH, GHRP/ghrelin and somatostatin; and hypothalamo-pituitary feedback by GH and IGF-I (2). Inasmuch as the full repertoire of potential agonists and antagonists of GH syn-

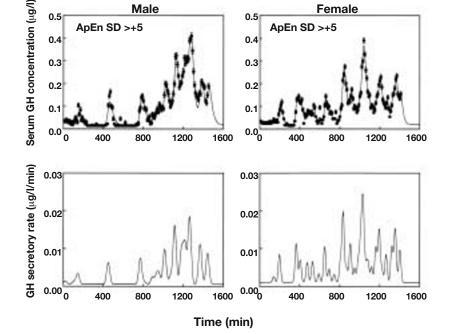

Primary peptidyl regulation of GH/IGF-I axis

Fig. 6 - Principal feedback (interrupted, -) and feedforward (solid, +) connections among GHRH, GHRP, somatostatin, GH and IGF-I.

thesis and/or release is formidable, we proposed a simplified tripeptidyl model that embodies convergent (final-common) signaling by the ensemble of GHRH, GHRP and somatostatin (2, 28, 33, 34, 56, 91) (Fig. 6). The ensemble concept specifically encapsulates reciprocal interactions among GHRH, GHRP/ghrelin and somatostatin and autonegative feedback by GH and IGF-I. The central thesis is that no single peptide acts in isolation. Rather, GH secretion is governed by recurrent, incremental, concentration-dependent, time-varying homologous and heterologous interactions among members of the axis (5-8).

Genetic silencing of individual signaling pathways establishes that GHRH feedforward, GHRP/ghrelin drive and somatostatin inhibition are crucial components of the core GH/IGF-I regulatory network. In particular, in the human, rare mutation of the GHRH-receptor gene reduces GH secretory-burst mass (and thereby daily GH secretion) by >30 fold, but does not alter GH pulse frequency or extinguish 24-h rhythmicity (92) (Fig. 7). As predicted by ApEn-based regularity concepts, interruption of GHRH-receptor signaling disrupts GH subpattern irregularity profoundly (>5 SDs from normal). In the mouse, transgenic repression of the hypothalamic GHRP (ghrelin) receptor diminishes food intake, reduces visceral fat mass and retards juvenile somatic growth in both sexes, but suppresses GH and IGF-I concentrations and

GHRH-receptor defect

Fig. 7 - Twenty-four h serum GH concentrations (upper) and deconvolved GH secretory rates (lower) in 2 young adults harboring a truncational mutation of the GHRH-receptor gene. Salient findings include: a) marked deterioration of pattern regularity (elevated approximate entropy, ApEn); b) preservation of discrete pulsatility; c) normal daily GH event frequency; d) profound reduction in GH secretory-burst mass; and e) retention of nycthemeral rhythmicity. Modified from (92).

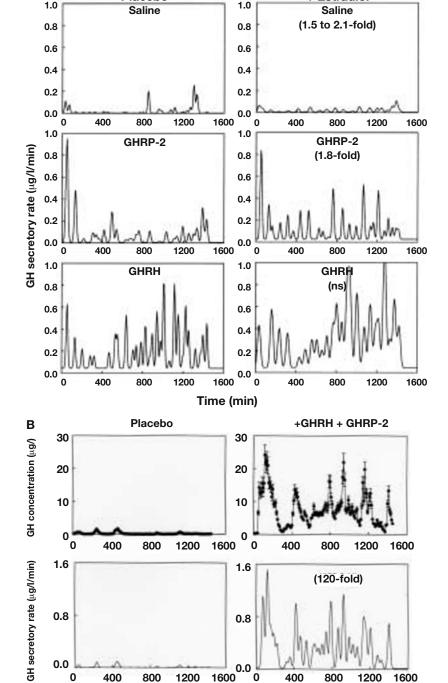
GH secretory patterns only in the female animal (93). Additional studies will be needed to define whether the latter distinction reflects a true gender contrast or unknown experimental factors (e.g. transgene dosage or strain background). Transgenic quenching of somatostatin-gene expression feminizes GH secretory patterns and hepatic sex-specific gene transcription. Lastly, loss-of-function mutations of the GH receptor and a single clinical example of IGF-I gene deletion establish the role of GH and IGF-I in feedback control (2).

Tripeptide control is mediated by homologous and heterologous effector-receptor interactions (Fig. 6). For example, GHRH stimulates pituitary ghrelin gene expression; intrahypothalamic somatostatin represses GHRH release; and ghrelin synergizes with GHRH and antagonizes somatostatin action. Wherever studied in detail, such interactions are dynamic, i.e., time-sensitive, dose-dependent, gender-modulated and developmentally regulated.

ESTROGENIC MODULATION OF TRIPEPTIDYL CONTROL

Clinical studies establish that estrogen is a dominant positive determinant of pulsatile GH secretion (1, 10, 34, 45, 94). Oral estradiol administration (in doses designed to emulate concentrations typical of the late follicular phase of the menstrual cycle) doubles GH secretory-burst mass and the (daily) GH secretion rate in ovariprival girls and women (18, 25, 95). The oral route is not singular in stimulatory efficacy, since review of extensive literature shows that oral, higherdose transdermal, intranasal, im, iv and intravaginal delivery of diverse estrogens in women and oral administration of diethylstilbestrol and im injection of estradiol polyphosphate in men elevate GH concentrations and reduce or do not alter systemic IGF-I concentrations in all age groups examined (33, 34, 91, 96). In contrast, states of endogenous estrogen repletion, such as the late follicular phase of the normal or (exogenously) induced menstrual cycle and puberty in girls, are marked by concurrent increments in GH and IGF-I concentrations (10, 75, 97). The basis for the latter disparity is not fully explained. One clue may be that (oral) estradiol administration elevates IGF-binding protein-1 (IGFBP-1) concentrations (98), which would predictably reduce free IGF-I availability further and unleash GH secretion by feedback withdrawal. Indeed, experimental (non-estrogen-dependent) suppression of plasma IGF-I concentrations by pharmacological blockade of GH-receptor function doubles pulsatile (and basal) GH secretion in young adults (36). A second observation is that systemic estrogen administration does not stimulate

(hepatic) IGFBP-3 production despite clearly augmenting GH drive (46, 98). This response dissociation is consistent with relative (hepatic) resistance to GH action, as inferred following high-dose estradiol exposure in the rat and rabbit (2, 39). A third evident distinction is that only (endogenous) estrogen secretion is characterized by concomitant ovarian production of androgen and (in the luteal phase) progesterone. In this regard, combined supplementation with estrogen and a synthetic progestin elevates both GH and IGF-I concentrations (2, 33, 34, 91). However, synthetic progestins in these contexts could act via the androgen and/or progesterone receptor.


Estrogen selectively stimulates GH secretory-burst mass and, thereby, elevates the incremental and absolute height of serum GH concentrations (16, 18, 25, 95). According to the foregoing simplified 3-peptide model, estrogen's amplification of GH secretory-burst mass would denote modulation of single or conjoint signaling by GHRH, GHRP/ghrelin, somatostatin and/or GH and IGF-I-enforced negative feedback (Fig. 2). Indeed, recent mechanistic experiments establish that estradiol repletion impacts all 5 regulatory mechanisms (41, 46, 99-102).

GHRH

In the rodent, estrogen represses the expression of GHRH peptide and the GHRH receptor (34). Inferences concerning sex-steroid control of exogenous GHRH feedforward drive in the human have been less consistent (96). We reasoned that earlier discrepancies may reflect variable cohort selection, choice of GHRH dose, concomitant somatostatin outflow and method of analysis (91, 94). As complementary strategies to address the impact of estradiol on (exogenous) GHRH action, we have utilized: a) continuous 24-h infusion of rh GHRH-1, 44-amide at a near-maximally effective dose to explore maximal agonist actions; b) acute L-arginine pretreatment to limit endogenous somatostatin inhibition during separate-day, randomly ordered, single-bolus injection of a 300-fold dose range of biosynthetic GHRH-1,44-amide in a within-subject crossover design; c) baseline-corrected and kinetically adjusted (deconvolution quantitation of) GH secretory-burst mass (µg/l of distribution volume) (21, 38, 40, 100).

Figure 8 illustrates 24-h serum GH concentration profiles monitored after randomly ordered placebo and estradiol supplementation along with constant iv infusion of saline or rh GHRH-1,44-amide (1 µg/kg/h). Notably, continuous near-maximal GHRH stimulation drives pulsatile and entropic GH secretion markedly, and estrogen repletion fails to

Placebo

Time (min)

Fig. 8 - A) Impact of continuous iv infusion of GHRP-2 or GHRH (1 µg/kg/h) during placebo and oral estradiol replacement on GH secretion rates in a healthy postmenopausal woman. The fold notation defines the ratio of the effect of estradiol over that of placebo. Combined from (38, 98). Figure 7 for data format. B) One hundred and twenty-fold stimulatory effect of combined continuous iv infusion of GHRH and GHRP-2 (each 1 µg/kg/h) over basal GH secretion in a postmenopausal volunteer withdrawn from estrogen. Dual secretagogue drive maintains a normal frequency of GH pulses, thereby indicating that signals other than GHRH and GHRP (alone or combined) mediate the GH pulse-renewal process. Adapted from data in (39).

affect either response (38). Bolus injection of single GHRH pulses in the somatostatin-withdrawn context augments GH secretory-burst mass dosedependently (100). In this context, estrogen sup-

800

0

plementation does not augment the maximal effect of GHRH, but amplifies: a) pituitary sensitivity to GHRH (defined by 2-fold elevation of the maximal slope of the dose-response function); b) GHRH po-

400

800

1200

1600

+ Estradiol

tency (identified by a 53% reduction in the half-maximally effective dose, ED $_{50}$ of GHRH) (38, 100). The foregoing observations offer an explanation for some of the reported disparities in estrogenic modulation of GHRH action, inasmuch as: a) estradiol does not facilitate a maximal GHRH stimulus; b) estradiol potentiates a submaximally effective (physiologically attainable) GHRH signal; c) L-arginine pretreatment may be required to limit GH secretory-response variability to GHRH injection. Whether testosterone heightens GHRH feedforward by analogous sensitization is not known.

GHRP (ghrelin)

Continuous iv infusion of a high dose of GHRP-2 (1 μ g/kg/h) for 24 h markedly amplifies all 3 of pulsatile, entropic and nycthemerally rhythmic GH secretions (37) (Fig. 8). This tripartite neurosecretory response emulates that induced by GHRH as well as that observed in normal midpuberty in boys and girls (15, 17, 28, 38, 73).

Administration of estrogen or testosterone augments apparent efficacy of synthetic GHRPs (103-105). The term "apparent efficacy" is appropriate at present, since a GHRP-2 dose-response analysis indicates that an unequivocally maximal secretory response is not demonstrable following injection of the highest evaluable dose (3 µg/kg) (41) (Fig. 9). Supplementation with estradiol potentiated the stimulatory effect of the last dose by 1.8-fold. Comparable studies will be important to conduct with the endogenous GHRP-receptor ligand, ghrelin. Moreover, the mechanisms mediating this striking action of estrogen will be meritorious to dissect (33, 41). A plausible clinical hypothesis is that estradiol induces the expression of hypothalamo-pitu-

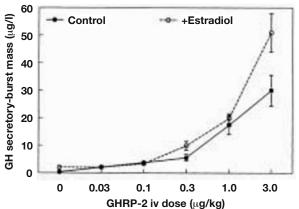


Fig. 9 - Potentiating action of estradiol pretreatment on bolus iv GHRP-2-stimulated GH secretory-burst mass in 11 healthy postmenopausal women. Modified from (41).

itary GHRP receptors, as reported by in vitro transcriptional assay (106, 107).

Somatostatin

The impact of sex steroids on somatostatin synthesis, release and action is complex and incompletely understood. In the rodent, testosterone or 5α -dihydrotestosterone induces, and orchidectomy represses, periventricular-nuclear somatostatin gene expression. In the rat, estradiol does not mimic the androgenic effect consistently (2). On the other hand, estradiol enhances submaximal L-arginine-stimulated GH release in the human (100). Assuming that this amino acid reduces hypothalamic outflow of somatostatin, the latter effect would denote that estrogen does not act exclusively by withdrawing somatostatin restraint. However, whether estrogen alters somatostatin release in the human is not known. According to a tripeptidyl regulatory model, muting of somatostatinergic inhibition would further amplify (non-maximal) GH secretion driven by a combined GHRH/GHRP stimulus (34). We tested this concept by simultaneous infusion of GHRH and GHRP-2 (1 µg/kg/h each) for 24 h in post-menopausal women during (randomly ordered) estrogen withdrawal and supplementation. In this unique setting, estradiol increases daily total, pulsatile and basal (nonpulsatile) GH secretion significantly by within-subject paired comparison (39) (Fig. 8). These data, if corroborated, would indicate that estradiol can repress hypothalamic somatostatin release or directly stimulate somatotropes (33). In addition, in the same setting, estradiol elevates GH ApEn and 24-h rhythmic GH release (technically defined by the mesor of the nycthemeral rhythm) (38). Mechanistically, such outcomes could reflect facilitation of GHRP action (38), enhancement of GHRH drive (100), disinhibition of GH autofeedback (46) and/or antagonism of somatostatin restraint (99).

In relation to somatostatin action, a recent clinical study disclosed that estradiol supplementation in postmenopausal women reduces the inhibitory potency (ID_{50}) of and blunts somatotrope sensitivity to somatostatin, but does not attenuate suppressive efficacy (99) (Fig. 10). The latter distinction is important, since it affirms estrogenic determination of physiological rather than pharmacological effects of somatostatin.

IMPACT OF AROMATIZABLE ANDROGEN

Testosterone repletion in puberty, hypogonadal boys and older men stimulates GH secretory-burst mass, increases pattern irregularity (ApEn) and heightens 24-h rhythmicity (19, 25, 29, 31, 32).

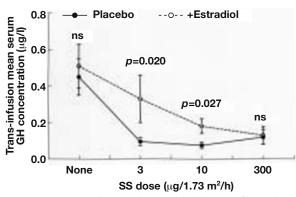


Fig. 10 - Estrogen relieves submaximal inhibition of GH release otherwise enforced by iv infusion of increasing doses of somatostatin (SS) in postmenopausal volunteers. p- values denote within-subject statistical contrasts (p=ns defines p>0.05). Modified from (99).

These effects are not observed in eugonadal young men even in the face of pharmacological serum total testosterone concentrations (e.g., 1000 to 1500 ng/dl) (19, 75). Other studies illustrate certain salient differences between the actions of exogenous testosterone and estrogen: a) only testosterone significantly (and consistently) increases plasma total IGF-I concentrations (34, 35); b) testosterone elevates underlying basal (nonpulsatile) GH release; c) oral estradiol, but not parenteral testosterone, increases serum IGFBP-1 concentrations (19, 41). Testosterone-dependent stimulation of IGF-I production requires augmentation of GH secretion, but is independent of ageor genotype (2, 34). In contrast, neither estrogen alone nor a non-aromatizable androgen (such as 5α -dihydrotestosterone, fluoxymesterone or stanozolol) uniformly elevates IGF-I concentrations (25, 75). One plausible hypothesis to account for distinguishable effects of systemic estrogen and testosterone on IGF-I production, basal GH secretion and IGFBP-1 concentrations is that in situ aromatization of testosterone to estradiol (but not systemic delivery of estrogen) directs specific signaling pathways by attaining high local concentrations (33, 34, 94).

GH-DEPENDENT AUTOFEEDBACK

Impact of estrogen

Compared with the male, the adult female rat is resistant (but not insensitive) to GH autonegative feedback (2). In the human, gender and pubertal status impact GH autofeedback in a unique fashion. In particular, a single iv pulse of rh GH inhibits GHRH-stimulated and spontaneous pulsatile GH

secretion consistently (by 50-70%) in pre-, mid- and post-pubertal boys, young women, postmenopausal individuals, and young and older men (28, 46, 101). Inhibition of spontaneous and exercise-stimulated GH secretion in young women and men is proportionate to dose of recombinant human (rh) GH over the range 1, 3 and 10 µg/kg (101). Gender comparisons reveal that men exhibit greater sensitivity to autofeedback inhibition than women, antipodal to the sex difference in the rodent (2). On the other hand, estradiol administration in postmenopausal women blunts GH-enforced negative feedback specifically on the GHRP-2 stimulus (but not on basal, exercise or GHRH-induced GH release) (46). Further complexity of sex-steroid control is evident in the recent clinical finding that administration of estradiol accentuates inhibition by rh IGF-I of spontaneous and GHRH-stimulated GH secretion (102). A plausible but unproven central mechanism for the last observation is the experimental capability of estrogen to upregulate expression of the pituitary Type 1 IGF receptor (108).

Impact of puberty

Puberty is remarkable by way of combined elevations in GH and IGF-I production (15, 17, 29). This circumstance also prevails in the late follicular phase of menstrual cycle and in pathological hypersomatotropism (60, 109, 110). Simultaneously increased secretion of a trophic hormone and the feedback product would point mechanistically to: a) autonomous feedforward drive (e.g., by fixed secretagogue infusion or unregulated hormone release by an endocrine tumor); b) impairment of central reception of the feedback signal (e.g., due to a genetic GH-receptor defect); c) attenuation of the central inhibitory response-effector mechanism, despite a normal feedback signal (e.g., transgenic silencing of somatostatin receptor subtype 2); d) disruption of the feedback signal proper (e.g., mutation of the GH protein). Plausible testable bases for the simultaneous increase in GH and IGF-I concentrations in puberty are heightened hypothalamic drive and blunted IGF-I and/or GH-dependent autonegative feedback. Investigation of these conjectures in healthy boys yielded 3 novel insights. First, a single pulse of rh GH inhibits GHRHstimulated GH release equivalently in all 3 of prepubertal boys, midpubertal boys and young men (28). This outcome signifies comparable rh GH-induced somatostatin outflow across adolescent development. Secondly, infused GH suppresses spontaneous GH secretion both fractionally (%) and decrementally (µg/l) more in midpuberty than in the child or adult. This mode of autofeedback could create marked downswings after GH pulses. Moreover, in view of inferentially equivalent GH-enforced somatostatin outflow, the later feature in mid-adolescence may denote greater feedback susceptibility of hypothalamic GHRH (and possibly ghrelin) release. And, thirdly, the time-course of recovery of GH secretion after maximal suppression is several-fold more rapid in midpuberty than in childhood or adulthood (Fig. 11). Accelerated resurgence of GH secretion after feedback repression could underlie prompt upswings in GH concentrations after an endogenous pulse. The basis for robust escape of GH pulsatility in mid-

Prompt autofeedback recovery in puberty

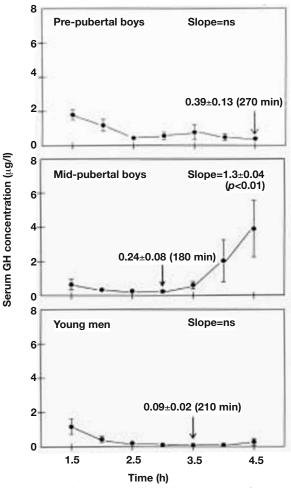


Fig. 11 - Accelerated time-dependent recovery of GH concentrations after recombinant human (rh) GH-induced suppression in mid-pubertal (middle) compared with pre-pubertal (top) boys and young men (bottom). Rh GH was injected at time 0 as a 3 µg/kg 6-min iv bolus. GH concentrations are the 30-min mean of 10-min data (±SEM, no.=6 subjects). The value and the time of the absolute nadir are marked. The slope (±SEM) of GH recovery is significantly nonzero in the midpubertal study cohort only. Revised from data in (28).

puberty may include an abbreviated duration of somatostatin outflow and/or heightened secretagogue drive.

FEEDBACK RESTRAINT BY SYSTEMIC IGF-I CONCENTRATIONS

Systemic IGF-I depletion typically unleashes GH secretion, as observed in fasting, anorexia nervosa, malabsorption, GH-receptor defects and rare deletion of the IGF-I gene (2). However, the metabolic complexity of these conditions limits the facile conclusion that IGF-I deprivation per se stimulates pulsatile GH release. More explicitly, however, administration of a highly selective GH-receptor antagonist peptide (pegvisomant) suppresses serum (total) IGF-I by 30% within 72 h and stimulates pulsatile (and basal) GH secretion by 1.8-fold in healthy young men and women (36, 52) (Fig. 12). There is no evident gender difference in the GH response, but larger study cohorts will be needed to verify this inference. The mechanism of feedback unleashing by this oligopegylated protein analog is not definitively inferable as yet. For example, GH-receptor blockade and IGF-I depletion both occur in this setting, either or both of which changes may induce GH secretion. Native GH molecules enter human cerebrospinal fluid, and act centrally via the cognate receptor to mediate autonegative feedback (2). Whether oligope-

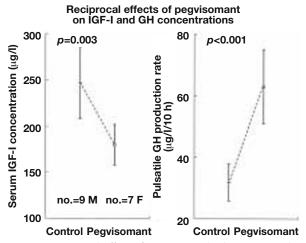


Fig. 12 - Reciprocal effect of a potent and selective recombinant human GH-receptor antagonist (pegvisomant) to suppress systemic total IGF-I concentrations and unleash pulsatile GH secretion. A double-monoclonal immunofluorometric assay (IFA) was applied to sera collected every 10 min overnight during the time window 64-72 h after saline or pegvisomant injection (1 mg/kg). The IFA measures GH concentrations without inference by pegvisomant. A separate IFA was used to quantitate 3000-fold higher serum concentrations of pegvisomant than GH (52). Values are the mean±SEM in 16 healthy young adults (9 men and 7 women). Adapted from data in (36).

gylated drug or a sparing amount of depegylated protein does likewise is not established clinically. In addition, large proteins, such as horseradish peroxidase, accumulate in the external median eminence and arcuate (but not periventricular) nucleus rapidly after systemic injection. The latter point is significant in that the GH receptor is expressed on inhibitory somatostatinergic and NPYergic neurons in the arcuate nucleus (2).

CONCLUSIONS

A basic tripeptidyl model of interactive control provides a platform for examining how gender and age impact GHRH, GHRP/ghrelin and somatostatinergic pathways and GH and IGF-I-dependent feedback. The present review highlights the utility of this construct in beginning to parse the complex mechanisms that mediate interactive control.

ACKNOWLEDGMENTS

The Authors thank Jean Plote for excellent editorial support. This work was supported in part by the National Center for Research Resources via General Clinical Research Center grant RR00585 to the Mayo Clinic and Foundation and NIH ROI AG 14799-05 and AG 19695-02.

REFERENCES

- Veldhuis JD. Nature of altered pulsatile hormone release and neuroendocrine network signalling in human ageing: clinical studies of the somatotropic, gonadotropic, corticotropic, and insulin axes. 2000 Mechanisms and Biological Significance of Pulsatile Hormone Secretion. John Wiley & Sons Ltd 2000, 163-89.
- Giustina A, Veldhuis JD. Pathophysiology of the neuroregulation of growth hormone secretion in experimental animals and the human. Endocr Rev 1998, 19: 717-97.
- Veldhuis JD, Johnson ML, Lizarralde G, Iranmanesh A. Rhythmic and non-rhythmic modes of anterior pituitary gland secretion: review of a model in which 24 hour rhythms in plasma concentrations of adenohypophyseal hormones are generated by distinct amplitude and/or frequency modulation of underlying pituitary secretory bursts. In: Touitou Y, Haus E eds. Chronobiology international. Berlin: Springer Verlag 1992, 371-9.
- 4. Evans WS, Sollenberger MJ, Booth RA Jr, et al. Contemporary aspects of discrete peak-detection algorithms. II. The paradigm of the luteinizing hormone pulse signal in women. Endocr Rev 1992, 13: 81-104.
- Farhy LS, Straume M, Johnson ML, Kovatchev BP, Veldhuis JD. A construct of interactive feedback control of the GH axis in the male. Am J Physiol Regul Integr Comp Physiol 2001, 281: R38-51.
- Farhy LM, Straume M, Johnson MJ, Kovatchev B, Veldhuis JD. Unequal autonegative feedback by GH models the

- sexual dimorphism in GH secretory dynamics. Am J Physiol Regul Integr Comp Physiol 2002, 282: R753-64.
- 7. Straume M, Veldhuis JD, Johnson ML. Realistic emulation of highly irregular temporal patterns of hormone release: a computer-based pulse simulator. Methods Neurosci 1995, 28: 220-43.
- Straume M, Chen L, Johnson ML, Veldhuis JD. Systemslevel analysis of physiological regulation interactions controlling complex secretory dynamics of growth hormone axis: a connectionist network model. Methods Neurosci 1995, 28: 270-310.
- Veldhuis JD. Issues in quantifying pulsatile neurohormone release. In: van de Kar LD ed. Methods in neuroendocrinology: the cellular and molecular neuropharmacology series. Boca Raton: CRC Press 1998, 181-203.
- Mauras N, Rogol AD, Haymond MW, Veldhuis JD. Sex steroids, growth hormone, insulin-like growth factor-1: neuroendocrine and metabolic regulation in puberty. Horm Res 1996, 45: 74-80.
- 11. Keenan DM, Veldhuis JD. A biomathematical model of timedelayed feedback in the human male hypothalamic-pituitary-Leydig cell axis. Am J Physiol 1998, 275: E157-76.
- Keenan DM, Licinio J, Veldhuis JD. A feedback-controlled ensemble model of the stress-responsive hypothalamo-pituitary-adrenal axis. Proc Natl Acad Sci USA 2001, 98: 4028-33.
- Hartman ML, Faria AC, Vance ML, Johnson ML, Thomer MO, Veldhuis JD. Temporal structure of in vivo growth hormone secretory events in man. Am J Physiol 1991, 260: E101-10.
- Holl RW, Hartman ML, Veldhuis JD, Taylor WM, Thorner MO. Thirty-second sampling of plasma growth hormone in man: correlation with sleep stages. J Clin Endocrinol Metab 1991, 72: 854-61.
- 15. Martha PM Jr, Goorman KM, Blizzard RM, Rogol AD, Veldhuis JD. Endogenous growth hormone secretion and clearance rates in normal boys, as determined by deconvolution analysis: relationship to age, pubertal status, and body mass. J Clin Endocrinol Metab 1992, 74: 336-44.
- van den Berg G, Veldhuis JD, Frolich M, Roelfsema F. An amplitude-specific divergence in the pulsatile mode of growth hormone (GH) secretion underlies the gender difference in mean GH concentrations in men and premenopausal women. J Clin Endocrinol Metab 1996, 81: 2460-7.
- 17. Veldhuis JD, Roemmich JN, Rogol AD. Gender and sexual maturation-dependent contrasts in the neuroregulation of growth-hormone (GH) secretion in prepubertal and late adolescent males and females a general clinical research center-based study. J Clin Endocrinol Metab 2000, 85: 2385-94.
- Shah N, Evans WS, Veldhuis JD. Actions of estrogen on the pulsatile, nyctohemeral, and entropic modes of growth hormone secretion. Am J Physiol 1999, 276: R1351-8.
- Gentili A, Mulligan T, Godschalk M, et al. Unequal impact of short-term testosterone repletion on the somatotropic axis of young and older men. J Clin Endocrinol Metab 2002, 87: 825-34.

- Hartman ML, Veldhuis JD, Johnson ML, et al. Augmented growth hormone (GH) secretory burst frequency and amplitude mediate enhanced GH secretion during a 2-day fast in normal men. J Clin Endocrinol Metab 1992, 74: 757-65.
- Veldhuis JD, Carlson ML, Johnson ML. The pituitary gland secretes in bursts: appraising the nature of glandular secretory impulses by simultaneous multiple-parameter deconvolution of plasma hormone concentrations. Proc Natl Acad Sci (USA) 1987, 84: 7686-90.
- 22. Veldhuis JD, Johnson ML. Specific methodological approaches to selected contemporary issues in deconvolution analysis of pulsatile neuroendocrine data. Meth Neurosci 1995, 28: 25-92.
- de Zegher F, Devlieger H, Eggermont E, Veldhuis JD. Properties of growth hormone and prolactin hypersecretion by the human infant on the day of birth. J Clin Endocrinol Metab 1993, 76: 1177-81.
- de Zegher F, Van den Berghe G, Devlieger H, Eggermont E, Veldhuis JD. Dopamine inhibits growth hormone and prolactin secretion in the human newborn. Pediatr Res 1993, 34: 642-5.
- 25. Veldhuis JD, Metzger DL, Martha Jr. PM, et al. Estrogen and testosterone, but not a non-aromatizable androgen, direct network integration of the hypothalamo-somatotrope (growth hormone)-insulin-like growth factor I axis in the human: evidence from pubertal pathophysiology and sex-steroid hormone replacement. J Clin Endocrinol Metab 1997, 82: 3414-20.
- Iranmanesh A, Grisso B, Veldhuis JD. Low basal and persistent pulsatile growth hormone secretion are revealed in normal and hyposomatotropic men studied with a new ultrasensitive chemiluminescence assay. J Clin Endocrinol Metab 1994, 78: 526-35.
- Veldhuis JD, Liem AY, South S, et al. Differential impact of age, sex-steroid hormones, and obesity on basal versus pulsatile growth hormone secretion in men as assessed in an ultrasensitive chemiluminescence assay. J Clin Endocrinol Metab 1995, 80: 3209-22.
- Richmond E, Rogol AD, Basdemir D, et al. Accelerated escape from GH autonegative feedback in midpuberty in males: evidence for time-delimited GH-induced somatostatinergic outflow in adolescent boys. J Clin Endocrinol Metab 2002, 87: 3837-44.
- Mauras N, Blizzard RM, Link K, Johnson ML, Rogol AD, Veldhuis JD. Augmentation of growth hormone secretion during puberty: Evidence for a pulse amplitude-modulated phenomenon. J Clin Endocrinol Metab 1987, 64: 596-601.
- Weltman A, Weltman JY, Schurrer R, Evans WS, Veldhuis JD, Rogol AD. Endurance training amplifies the pulsatile release of growth hormone: effects of training intensity. J Appl Physiol 1992, 76: 2188-96.
- 31. Ulloa-Aguirre A, Blizzard RM, Garcia-Rubi E, et al. Testosterone and oxandrolone, a non-aromatizable androgen, specifically amplify the mass and rate of growth hormone (GH) secreted per burst without altering GH se-

- cretory burst duration or frequency or the GH half-life. J Clin Endocrinol Metab 1990, 71: 846-54.
- Giustina A, Scalvini T, Tassi C, et al. Maturation of the regulation of growth hormone secretion in young males with hypogonadotropic hypogonadism pharmacologically exposed to progressive increments in serum testosterone. J Clin Endocrinol Metab 1997, 82: 1210-9.
- 33. Veldhuis JD, Evans WS, Bowers CY, Anderson S. Interactive regulation of the postmenopausal growth hormone insulin-like growth factor axis by estrogen and growth hormone-releasing peptide-2. Endocrine 2001, 14: 45-62.
- 34. Veldhuis JD, Evans WS, Shah N, Story S, Bray MJ, Anderson SM. Proposed mechanisms of sex-steroid hormone neuromodulation of the human GH-IGF-I axis. In: Veldhuis JD, Giustina A eds. Sex-steroid interactions with growth hormone. New York: Springer-Verlag New York, Inc. 1999, 93-121.
- 35. Fryburg DA, Weltman A, Jahn LA, et al. Androgenic modulation of the growth hormone-IGF axis and its impact on metabolic outcomes. In: Veldhuis JD, Giustina A eds. Sexsteroid interaction with growth hormone. New York: Springer-Verlag New York, Inc. 1999, 82-92.
- 36. Veldhuis JD, Bidlingmaier M, Anderson SM, Wu Z, Strasburger CJ. Lowering total plasma IGF-I concentrations by way of a novel, potent and selective GH-receptor antagonist, pegvisomant (B2036-PEG), augments the amplitude of GH secretory bursts and elevates basal/nonpulsatile GH release in healthy women and men. J Clin Endocrinol Metab 2001, 86: 3304-10.
- Van den Berghe G, Wouters P, Weekers F, et al. Reactivation of pituitary hormone release and metabolic improvement by infusion of growth hormone-releasing peptide and thyrotropin-releasing hormone in patients with protracted critical illness. J Clin Endocrinol Metab 1999, 84: 1311-23.
- 38. Evans WS, Anderson SM, Hull LT, Azimi PP, Bowers CY, Veldhuis JD. Continuous 24-hour intravenous infusion of recombinant human growth hormone (GH)-releasing hormone-(1,44)-amide augments pulsatile, entropic, and daily rhythmic GH secretion in postmenopausal women equally in the estrogen-withdrawn and estrogen-supplemented states. J Clin Endocrinol Metab 2001, 86: 700-12.
- Veldhuis JD, Evans WS, Bowers CY. Impact of estradiol supplementation on dual peptidyl drive of growth-hormone secretion in postmenopausal women. J Clin Endocrinol Metab 2002, 87: 859-66.
- 40. Iranmanesh A, South S, Liem AY, et al. Unequal impact of age, percentage body fat, and serum testosterone concentrations on the somatotropic, IGF-I, and IGF-binding protein responses to a 3-day intravenous growth-hormonereleasing-hormone (GHRH) pulsatile infusion. Eur J Endocrinol 1998, 139: 59-71.
- Anderson SM, Shah N, Patrie JT, Evans WS, Bowers CY, Veldhuis JD. Short-term estradiol supplementation augments growth hormone (GH)-secretory responsiveness to dose-varying growth hormone-releasing peptide (GHRP-2) infusions in postmenopausal women. J Clin Endocrinol Metab 2000, 86: 551-60.

- 42. Schaefer F, Baumann G, Faunt LM, et al. Multifactorial control of the elimination kinetics of unbound (free) GH in the human: regulation by age, adiposity, renal function, and steady-state concentrations of GH in plasma. J Clin Endocrinol Metab 1996, 81: 22-31.
- 43. Langendonk JG, Pijl H, Schoemaker R, et al. Estimates of growth hormone secretion rate: impact of kinetic assumptions intrinsic to the analytical approach. Am J Physiol 2001, 280: R225-32.
- 44. Shah N, Aloi J, Evans WS, Veldhuis JD. Time-mode of growth hormone (GH) entry into the bloodstream and steady-state plasma GH concentrations rather than sex, estradiol, or menstrual-cycle stage primarily determine the GH elimination rate in healthy young women and men. J Clin Endocrinol Metab 1999, 84: 2862-9.
- 45. Ovesen P, Vahl N, Christiansen JS, Veldhuis JD, Jorgensen JO. Menstrual cycle interaction with the growth hormone axis. In: Veldhuis JD, Giustina A eds. Sex-steroid interactions with growth hormone. New York: Springer-Verlag New York, Inc. 1999, 67-73.
- Anderson SM, Wideman L, Patrie JT, Weltman A, Bowers CY, Veldhuis JD. Estradiol supplementation selectively relieves growth hormone (GH)'s autonegative feedback on GH-releasing peptide-2 (GHRP-2)-stimulated GH secretion. J Clin Endocrinol Metab 2002, 86: 5904-11.
- Veldhuis JD, Lassiter AB, Johnson ML. Operating behavior of dual or multiple endocrine pulse generators. Am J Physiol 1990, 259: E351-E61.
- Vahl N, Jorgensen JO, Skjaerback C, Veldhuis JD, Orskov H, Christiansen J. Abdominal adiposity rather than age and sex predicts the mass and patterned regularity of growth hormone secretion in mid-life healthy adults. Am J Physiol 1997, 272: E1108-E16.
- Pijl H, Langendonk JG, Burggraaf J, et al. Altered neuroregulation of GH secretion in viscerally obese premenopausal women. J Clin Endocrinol Metab 2001, 86: 5509-15.
- 50. Veldhuis JD, Johnson ML, Faunt LM, Mercado M, Baumann G. Influence of the high-affinity growth hormone (GH)-binding protein on plasma profiles of free and bound GH and on the apparent half-life of GH. J Clin Invest 1993, 91: 629-41.
- 51. Veldhuis JD, Faunt LM, Johnson ML. Analysis of nonequilibrium dynamics of bound, free, and total plasma ligand concentrations over time following nonlinear secretory inputs: evaluation of the kinetics of 2 or more hormones pulsed into compartments containing multiple variable-affinity binding proteins. Methods Enzymol 1994, 240: 349-77.
- 52. Veldhuis JD, Bidlingmaier M, Anderson SM, Evans WS, Wu Z, Strasburger CJ. Impact of experimental blockade of peripheral growth hormone (GH) receptors on the kinetics of endogenous and exogenous GH removal in healthy women and men. J Clin Endocrinol Metab 2002, 87: 5737-45.
- Johnson ML, Veldhuis JD. Evolution of deconvolution analysis as a hormone pulse detection method. Methods Neurosci 1995, 28: 1-24.

- 54. Veldhuis JD, Johnson ML. Deconvolution analysis of hormone data. Methods Enzymol 1992, 210: 539-75.
- 55. Urban RJ, Veldhuis JD. Hypothalamo-pituitary concomitants of aging. In: Sowers JR, Felicetta JV eds. The endocrinology of aging. New York: Raven Press 1988, 41-74.
- 56. Veldhuis JD, Fletcher TP, Gatford KL, Egan AR, Clarke IJ. Hypophyseal-portal somatostatin (SRIH) and jugular venous growth hormone secretion in the conscious unrestrained ewe. Neuroendocrinology 2002, 75: 83-91.
- 57. Keenan DM, Sun W, Veldhuis JD. A stochastic biomathematical model of the male reproductive hormone system. SIAM J of Appl Math 2000, 61: 934-65.
- Keenan DM, Veldhuis JD. Stochastic model of admixed basal and pulsatile hormone secretion as modulated by a deterministic oscillator. Am J Physiol 1997, 273: R1182-92.
- 59. Veldhuis JD, Evans WS, Johnson ML. Complicating effects of highly correlated model variables on nonlinear leastsquares estimates of unique parameter values and their statistical confidence intervals: estimating basal secretion and neurohormone half-life by deconvolution analysis. Methods Neurosci 1995, 28: 130-8.
- 60. Hartman ML, Pincus SM, Johnson ML, et al. Enhanced basal and disorderly growth hormone secretion distinguish acromegalic from normal pulsatile growth hormone release. J Clin Invest 1994, 94: 1277-88.
- Veldhuis JD, Pincus SM. Orderliness of hormone release patterns: a complementary measure to conventional pulsatile and circadian analyses. Eur J Endocrinol 1998, 138: 358-62.
- 62. Pincus SM, Hartman ML, Roelfsema F, Thorner MO, Veldhuis JD. Hormone pulsatility discrimination via coarse and short time sampling. Am J Physiol 1999, 277: E948-57.
- Keenan DM, Veldhuis JD. Hypothesis testing of the aging male gonadal axis via a biomathematical construct. Am J Physiol Regul Integr Comp Physiol 2001, 280: R1755-71.
- 64. Pincus SM, Mulligan T, Iranmanesh A, Gheorghiu S, Godschalk M, Veldhuis JD. Older males secrete luteinizing hormone and testosterone more irregularly, and jointly more asynchronously, than younger males. Proc Natl Acad Sci USA 1996, 93: 14100-5.
- Pincus SM. Approximate entropy as a measure of system complexity. Proc Natl Acad Sci USA 1991, 88: 2297-301.
- Pincus SM, Keefe DL. Quantification of hormone pulsatility via an approximate entropy algorithm. Am J Physiol 1992, 262: E741-54.
- 67. Veldhuis JD, Straume M, Iranmanesh A, et al. Secretory process regularity monitors neuroendocrine feedback and feedforward signaling strength in humans. Am J Physiol Regul Integr Comp Physiol 2001, 280: R721-9.
- van den Berg G, Pincus SM, Frolich M, Veldhuis JD, Roelfsema F. Reduced disorderliness of growth hormone release in biochemically inactive acromegaly after pituitary surgery. Eur J Endocrinol 1998, 138: 164-9.
- 69. van den Berg G, Pincus SM, Veldhuis JD, Frolich M, Roelfsema F. Greater disorderliness of ACTH and cortisol

- release accompanies pituitary-dependent Cushing's Disease. Eur J Endocrinol 1997, 136: 394-400.
- Roelfsema F, Pincus SM, Veldhuis JD. Patients with Cushing's disease secrete adrenocorticotropin and cortisol jointly more asynchronously than healthy subjects. J Clin Endocrinol Metab 1998, 83: 688-92.
- Veldman RG, van den Berg G, Pincus SM, Frolich M, Veldhuis JD, Roelfsema F. Increased episodic release and disorderliness of prolactin secretion in both micro- and macroprolactinomas. Eur J Endocrinol 1999, 140: 192-200.
- Pincus SM, Gevers E, Robinson ICAF, et al. Females secrete growth hormone with more process irregularity than males in both human and rat. Am J Physiol 1996, 270: E107-15.
- Pincus SM, Veldhuis JD, Rogol AD. Longitudinal changes in growth hormone secretory process irregularity assessed transpubertally in healthy boys. Am J Physiol Endocrinol Metab 2000, 279: E417-24.
- Gevers E, Pincus SM, Robinson IC, Veldhuis JD. Differential orderliness of the GH release process in castrate male and female rats. Am J Physiol 1998, 274: R437-44.
- Fryburg DA, Weltman A, Jahn LA, Weltman JY, Samolijik E, Veldhuis JD. Short-term modulation of the androgen milieu alters pulsatile but not exercise or GHRH-stimulated GH secretion in healthy men. J Clin Endocrinol Metab 1997, 82: 3710-9.
- Painson JC, Veldhuis JD, Tannenbaum GS. Single exposure to testosterone in adulthood rapidly induces regularity in the growth hormone release process. Am J Physiol 2000, 278: E933-40.
- 77. Wu FCW, Butler GE, Kelnar CJH, Huhtaniemi I, Veldhuis JD. Patterns of pulsatile luteinizing hormone secretion from childhood to adulthood in the human male: a study using deconvolution analysis and an ultrasensitive immunofluorometric assay. J Clin Endocrinol Metab 1996, 81: 1798-805.
- Veldhuis JD. Male hypothalamic-pituitary-gonadal axis. In: Yen SSC, Jaffe RB, Barbieri RL eds. Reproductive endocrinology. Philadelphia: WB Saunders Co 1999, 622-31.
- 79. Meneilly GS, Veldhuis JD, Elahi D. Disruption of the pulsatile and entropic modes of insulin release during an unvarying glucose stimulus in elderly individuals. J Clin Endocrinol Metab 1999, 84: 1938-43.
- Veldhuis JD, Iranmanesh A, Mulligan T, Pincus SM. Disruption of the young-adult synchrony between luteinizing hormone release and oscillations in follicle-stimulating hormone, prolactin, and nocturnal penile tumescence (NPT) in healthy older men. J Clin Endocrinol Metab 1999, 84: 3498-505.
- 81. Veldhuis JD, Iranmanesh A, Godschalk M, Mulligan T. Older men manifest multifold synchrony disruption of reproductive neurohormone outflow. J Clin Endocrinol Metab 2000, 85: 1477-86.
- 82. Mulligan T, Iranmanesh A, Kerzner R, Demers LW, Veldhuis JD. Two-week pulsatile gonadotropin releasing hormone infusion unmasks dual (hypothalamic and Leydig-cell) defects in the healthy aging male gonadotropic axis. Eur J Endocrinol 1999, 141: 257-66.

- 83. Veldhuis JD, Iranmanesh A, Demers LM, Mulligan T. Joint basal and pulsatile hypersecretory mechanisms drive the monotropic follicle-stimulating hormone (FSH) elevation in healthy older men: concurrent preservation of the orderliness of the FSH release process. J Clin Endocrinol Metab 1999, 84: 3506-14.
- 84. Pincus SM, Veldhuis JD, Mulligan T, Iranmanesh A, Evans WS. Effects of age on the irregularity of LH and FSH serum concentrations in women and men. Am J Physiol 1997, 273: E989-95.
- 85. Gravholt CH, Veldhuis JD, Christiansen JS. Increased disorderliness and decreased mass and daily rate of endogenous growth hormone secretion in adult Turner syndrome: the impact of body composition, maximal oxygen uptake and treatment with sex hormones. Growth Horm IGF Res 1998, 8: 289-98.
- 86. Zwart A, Iranmanesh A, Veldhuis JD. Disparate serum free testosterone concentrations and degrees of hypothalamopituitary-LH suppression are achieved by continuous versus pulsatile intravenous androgen replacement in men: a clinical experimental model of ketoconazole-induced reversible hypoandrogenemia with controlled testosterone add-back. J Clin Endocrinol Metab 1997, 82: 2062-9.
- 87. Keenan DM, Veldhuis JD, Yang R. Joint recovery of pulsatile and basal hormone secretion by stochastic nonlinear random-effects analysis. Am J Physiol 1998, 274: R1939-49.
- Veldhuis JD, Johnson ML, Veldhuis OL, Straume M, Pincus S. Impact of pulsatility on the ensemble orderliness (approximate entropy) of neurohormone secretion. Am J Physiol Regul Integr Comp Physiol 2001, 281: R1975-85.
- 89. Veldhuis JD, Zwart A, Mulligan T, Iranmanesh A. Muting of androgen negative feedback unveils impoverished gonadotropin-releasing hormone/luteinizing hormone secretory reactivity in healthy older men. J Clin Endocrinol Metab 2001, 86: 529-35.
- Veldhuis JD, Iranmanesh A, Naftolowitz D, Tatham N, Cassidy F, Carroll BJ. Corticotropin secretory dynamics in humans under low glucocorticoid feedback. J Clin Endocrinol Metab 2001, 86: 5554-63.
- Veldhuis JD. Neuroendocrine control of pulsatile growthhormone release in the human: relationship with gender. Growth Horm IGF Res 1998, 8: 49-59.
- Roelfsema F, Biermasz NR, Veldman RG, et al. Growth hormone (GH) secretion in patients with an inactivating defect of the GH-releasing hormone (GHRH) receptor is pulsatile: evidence for a role for non-GHRH inputs into the generation of GH pulses. J Clin Endocrinol Metab 2000, 86: 2459-64.
- Shuto Y, Shibasaki T, Otagiri A, et al. Hypothalamic growth hormone secretagogue receptor regulates growth hormone secretion, feeding, and adiposity. J Clin Invest 2002, 109: 1429-36.
- 94. Veldhuis JD, Iranmanesh A, Weltman A. Elements in the pathophysiology of diminished growth hormone (GH) secretion in aging humans. Endocrine 1997, 7: 41-8.
- Mauras N, Rogol AD, Veldhuis JD. Increased hGH production rate after low-dose estrogen therapy in prepu-

- bertal girls with Turner's syndrome. Pediatr Res 1990, 28: 626-30.
- Veldhuis JD. Gender differences in secretory activity of the human somatotropic (growth hormone) axis. Eur J Endocrinol 1996, 134: 287-95.
- 97. Faria ACS, Bekenstein LW, Booth RA Jr, et al. Pulsatile growth hormone release in normal women during the menstrual cycle. Clin Endocrinol (Oxf) 1992, 36: 591-6.
- Shah N, Evans WS, Bowers CY, Veldhuis JD. Oral estradiol administration modulates continuous intravenous growth hormone (GH)-releasing peptide-2 driven GH secretion in postmenopausal women. J Clin Endocrinol Metab 2000, 85: 2649-59.
- Bray MJ, Vick TM, Shah N, et al. Short-term estradiol replacement in postmenopausal women selectively mutes somatostatin's dose-dependent inhibition of fasting growth hormone secretion. J Clin Endocrinol Metab 2001, 86: 3143-9.
- 100. Evans WS, Bowers CY, Veldhuis JD. Estradiol supplementation enhances pituitary sensitivity to recombinant human (RH) GHRH-1, 44-amide in somatostatin (SS)-withdrawn postmenopausal women. Presented at the Endocrine Society 83rd Meeting, Denver, Colorado, June 20-23, 2001 (abstract).
- 101. Wideman L, Weltman JY, Anderson S, et al. A. Growth hormone (GH) autonegative feedback at rest and during exercise-stimulated GH release. First Joint Symposium GH-IGF, Boston, MA, September 2002 (abstract).
- 102. Anderson SM, Kok P, Patrie JT, Veldhuis JD. Estrogen supplementation enhances rh IGF-I suppression of GH secretion in postmenopausal women. First Joint Symposium GH-IGF, Boston, MA, September 2002 (abstract).

- 103. Sites CK, Kessel B, LaBarbera AR. Adhesion proteins increase cellular attachment; follicle-stimulating hormone receptors, and progesterone production in cultured porcine granulosa cells. Proc Soc Exp Biol Med 1996, 212: 78-83.
- 104. Bellone J, Aimaretti G, Bartolotta E, et al. Growth hormone-releasing activity of hexarelin, a new synthetic hexapeptide, before and during puberty. J Clin Endocrinol Metab 1995, 80: 1090-4.
- 105. Ghigo E, Arvat E, Gianotti L, et al. Endocrine response to growth hormone-releasing peptides across human life span. In: Bercu BB, Walker RF eds. Growth hormone secretagogues in clinical practice. New York: Marcel Dekker Inc 1998, 345-67.
- 106. Kaji H, Kishimoto M, Kirimura T, et al. Hormonal regulation of the human ghrelin receptor gene transcription. Biochem Biophys Res Commun 2001, 284: 660-6.
- Kaji H, Tai S, Okimura Y, et al. Cloning and characterization of the 5'-flanking region of the human growth hormone secretagogue receptor gene. J Biol Chem 1998, 273: 33885-8.
- 108. Aguilar E, Tena-Sempere M, Pinilla L. 5-alpha androstanediol stimulates the pituitary growth hormone responsiveness to growth hormone releasing hormone more effectively than testosterone or dihydrotestosterone in rats. Acta Endocrinol (Copenh) 1992, 126: 162-6.
- 109. van den Berg G, Frolich M, Veldhuis JD, Roelfsema F. Growth hormone secretion in recently operated acromegalic patients. J Clin Endocrinol Metab 1994, 79: 1706-15.
- 110. Ovesen P, Vahl N, Fisker S, Veldhuis JD, Christiansen JS, Jorgensen JO. Increased pulsatile, but not basal, growth hormone secretion rates and plasma insulin-like growth factor I levels during the preovulatory interval in normal women. J Clin Endocrinol Metab 1998, 83: 1662-7.