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ABSTRACT. Age and gender impact the full
repertoire of neurohormone systems, including
most prominently the somatotropic, gonado-
tropic and lactotropic axes. For example, daily
GH production is approximately 2-fold higher in
young women than men and varies by 20-fold by
sexual developmental status and age. Decon-
volution estimates of 24-h GH secretion rates ex-
ceed 1200 μg/m2 in adolescents and fall below
60 μg/m2 in aged individuals. The present
overview highlights plausible factors driving such
lifetime variations in GH availability, i.e., estro-
gen, aromatizable androgen, hypothalamic pep-
tides and negative feedback by GH and IGF-I. 

In view of the daunting complexity of potential
neuromodulatory signals, we underline the utility
of conceptualizing a simplified three-peptide reg-
ulatory ensemble of GHRH, GHRP (ghrelin) and
somatostatin. The foregoing signals act as indi-
vidual and conjoint mediators of adaptive GH con-
trol. Regulation is enforced at 3-fold comple-
mentary time scales, which embrace pulsatile
(burst-like), entropic (orderly) and 24-h rhythmic
(nycthemeral) modes of GH release. This unifying
platform offers a convergent perspective of mul-
tivalent control of GH outflow. 
(J. Endocrinol. Invest. 26: 799-813, 2003)
©2003, Editrice Kurtis

DYNAMIC (TIME-SENSITIVE) MODES OF
HYPOTHALAMIC-PITUITARY REGULATION

Endocrine glands typically communicate with 
remote target glands via intermittent signal 
exchange (1). In the case of the growth-promoting
and metabolism-modulating somatotropic axis,
core signals include multiple neuropeptides 
released by the hypothalamus, GH secreted by the
anterior pituitary gland, blood-borne metabolites,
systemic hormones, IGF-I and cognate binding pro-
teins synthesized in the central nervous system
(CNS), adenohypophysis and a host of somatic cells
(2). From a heuristic point of view, fluctuating GH
concentrations exhibit pulsatile (briefly episodic),
low-entropic (feedback-enforced orderly) and 24-h
rhythmic patterns (Fig. 1). GH release is nycthe-

meral, but not unequivocally circadian, i.e.,
Zeitgeber phase-setting, free-running under tem-
poral isolation and temperature-compensated in
poikilothermic species (3). The term nycthemeral
rhythmicity is more appropriate for diurnally vary-
ing GH secretion until definitive circadian data 
become available (3, 4). Below, we discuss the pul-
satile and entropic modes of regulated GH release.

Feedback and feedforward control
An emergent concept in neuroendocrine systems 
is that homeostasis is achieved via incremental 
feedback and feedforward signaling (2, 5-8).
Interglandular signal exchange embraces: a) variable
time delays inherent in hormone synthesis, secretion,
delivery and action; b) non-linear dose-response
properties; c) stochastic (random) factors of both bi-
ological and technical origin; d) simultaneous modu-
lation by external (e.g. nutrition) and internal (e.g.
suprachiasmatic nuclear) signals (9, 10). Figure 2 il-
lustrates some stochastic and deterministic mecha-
nisms that mediate homeostasis. Mathematical for-
malism aids in quantitating such time-sensitive and
signal-adaptive dynamics, which are difficult to visu-
alize intuitively (5, 6, 11, 12). 
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Episodic or pulsatile GH release
Pulsatile GH secretion evolves as a succession of
randomly timed and variable-amplitude volleys
composed of individual discrete secretory bursts
(13-17). Nycthemeral factors drive 24-h variations
in GH pulse amplitude and (in lesser measure) fre-
quency (13, 15, 16, 18, 19). Fasting and sleep
markedly amplify GH peak height and elevate
event frequency moderately consistent with pre-
ponderantly amplitude-dependent control of this
axis (14, 20). 
Secretory-burst mass is a derived estimate of the
unobserved amount of hormone secreted into the
bloodstream per unit distribution volume within
a given pulse (e.g. μg/l GH) (1, 21, 22). The mass
of GH released per burst fluctuates across the day
and night from as little as 0.3-1.0 μg in the awake,
calorically replete older adult to as much as 
80-130 μg in the asleep, fasting neonate and ado-
lescent (15, 17, 23-28). In contradistinction, GH
pulse frequency averages 14 to 18 prominent
events/day independently of gender, hormonal
milieu, physical fitness, age or developmental sta-
tus (15, 16, 18, 19, 25, 29, 30). Thus, the absolute
range of daily GH secretion per unit surface area
(m2) is <60 μg in the elderly and >1200 μg in ado-
lescents (assuming a 7% GH distribution volume)
(2). In the latter regard, puberty amplifies the
mass of GH secreted within each pulse by 3- to
11-fold (15, 17) (Fig. 3). Estrogen, aromatizable
androgen, physical fitness and systemic IGF-I 
depletion likewise augment GH secretory-burst
amplitude by several fold (19, 25, 29-36). Indeed,
all primary secretagogues drive secretory-burst
GH size selectively (37-41). 

GH kinetics
The plasma half-life of GH averages 14-18 min 
(extreme range 8-25 min), and is unrelated to gen-
der, stage of the menstrual cycle, androgen or 
estrogen status, pubertal stage or age (42-45). On
the other hand, short-term estradiol repletion 
increases the distribution volume and metabolic clear-
ance rate (MCR) of GH by approximately 30% within-
subject [recalculated from data in (46)]. The indistin-
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Fig. 1 - Illustrative schema of the 3 principal time-modes of reg-
ulated GH secretion, i.e., pulsatile, entropic (feedback-sensi-
tive) and nycthemeral (circadian-like). Composite control is en-
dowed by time-delayed, non-linear, dose-dependent and
stochastically modulated feedback and feedforward signal ex-
change (5, 6).
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guishable half-life in estradiol-deficient and replete
individuals signifies that estrogen does not control
the rate of exit of GH from the circulation. 
The estradiol-induced increase in GH distribution
space implies that estrogen stimulates (total-
body) GH secretion by up to 1.3-fold more than
would be inferable from concentration measure-
ments (47). This effect is small compared with the
1.8- to 2.2-fold augmentation of 24-h GH secre-
tion. Visceral obesity mimics the effects of estro-
gen, and for unknown reasons accelerates the 
removal of GH from plasma (thus reducing GH
half-life) (42-44, 48, 49). Whether GH-binding pro-
tein concentrations in tissue fluids determines
physiological efflux of GH from plasma is not
known (42, 50-52). However, GH receptors do not
greatly influence GH kinetics, inasmuch as 
administration of a 3000-fold excess of a selec-
tive GH-receptor antagonist peptide (pegviso-
mant) does not alter any of 5 independent mea-
sures of GH elimination in humans (52). 

Analytical issues
Statistical reconstruction of underlying GH secre-
tory-burst waveform (and, hence, mass) is now pos-
sible under several assumptions. The family of es-
timation procedures is termed deconvolution anal-
ysis (22, 53). One analytical approach entails quan-
titating burst-like episodes of time-delimited 
GH secretion (21, 54). This model predicts that 
approximately 1015 molecules (10 nmol) of GH are
released into the circulation in a single burst. Based
on statistical mechanics, one would expect secre-
tory rates for this number of molecules to vary

smoothly, so that initial (granule-prestored) distri-
bution of release rates would be approximately
Gaussian over time (Fig. 4). Direct cavernous-vein
sampling in the human and sheep indicate that this
a priori approximation is realistic (55, 56). Such rea-
soning applies more strictly to purely random
(stochastic) processes, such as the discharge of
readily releasable hormone molecules by a topo-
graphically dispersed set of cells (57). Time-de-
layed de novo biosynthesis of GH, encapsulation of
protein molecules into exocytotic secretory vesi-
cles, vectoral granule movement to the membrane,
and docking, fusion and discharge of GH contents
confer deterministic skewness to the evolving se-
cretory burst (11, 58). Thus, more recent repre-
sentations of a secretory event predict a variably
asymmetric (right tail-extended) burst, which can
be represented by the generalized �-density func-
tion (11, 57, 58). The Gaussian model provides a
practical approximation (and de facto mathemati-
cal subset) of the generalized � density under less
frequent sampling conditions. 
Available estimates indicate that 50% of an under-
lying GH secretory burst unfolds over 8 to 14 min,
unlike the 60-100 min duration of a resultant GH
concentration peak. Prolongation of the pulse in
the circulation is due to delayed elimination of 
secreted GH molecules. Thus, precise quantitation
of true GH secretory-burst shape would require
successive measurements every 1 to 3 min (e.g. 5 or
more observations per event) (22, 54, 59). This con-
cept is illustrated by the analysis of 30-sec or 5-min
sampling protocols in healthy young men or 
patients with acromegaly, respectively (13, 14, 60). 
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Fig. 3 - Pubertal augmentation of GH secretory-burst mass
(μg/l). The latter was assessed by deconvolution analysis of
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Pattern regularity
On a more rapid time scale of minutes, neurohor-
mone release is controlled by repeated incremental,
deterministic adjustments enforced by physiological
feedforward and feedback with superimposed
stochastic effects (60, 61). This perspective applies to
any adaptive network, such as the somatotropic, go-
nadotropic or corticotropic axis that maintains mean
homeostasis (6, 12, 62-64). As shown in Figure 5, reg-
ularity or orderliness on a more subtle (sample-by-
sample) time scale can be quantitated inter alia by
the approximate entropy (ApEn) statistic (61, 65, 66).
According to concepts of ensemble or network con-
trol, adaptively interlinked systems maintain quantifi-
able subpattern regularity or orderliness (low process
randomness). Loss or gain of integrative control re-
spectively disrupts or enhances regularity (25, 62, 67).
Less regular patterns of hormone secretion by pitu-
itary tumors exemplify this principle, wherein tumoral
autonomy blunts feedback and feedforward (correc-
tive) adjustments. Thus, quantitation by ApEn (ran-
domness score) identifies marked secretory disor-
derliness of GH, ACTH, prolactin and insulin release
in acromegaly, Cushing’s disease, prolactinoma and
aging, respectively (60, 68-71). Validation of ApEn
applications to short data series indicates that 12-24
consecutive measurements of serum GH (at midnight)
and ACTH (in the morning) concentrations are suffi-
cient to discriminate tumoral from physiological sam-
ple-by-sample regularity with >90% sensitivity and
>90% specificity (62). 

Factors driving altered feedback-dependent
regularity
Gender, age and pubertal status determine the
quantifiable orderliness (ApEn) of GH release (34, 35,
61). Secretory irregularity is greater in adolescent
girls and young or older women than in male coun-
terparts of comparable ages (17, 72). Such distinc-

tions denote unequal within-axis feedback control
by gender. Within gender, pattern reproducibility
further depends upon sex steroid availability (25, 34).
For example, a longitudinal appraisal of GH ApEn
transpubertally in healthy boys documented that
marked deterioration of regularity emerges 0-4
months before maximal linear height velocity is at-
tained (73). Surgical castration and GnRH analog-
induced gonadotropin downregulation in the juve-
nile rat impose graded distinctions in GH secretory
regularity in the adult animal, thereby demonstrat-
ing that gonadal sex-steroid hormones imprint feed-
back control (74). However, feedback and feedfor-
ward interactions in the GH axis are by no means
fixed at sexual maturity in the human or rodent.
Estrogen and testosterone (but not 5�-dihy-
drotestosterone or stanozolol) administration in chil-
dren and adults will elevate GH ApEn (induce greater
secretory randomness), which signifies prominent
adaptations in feedback and/or feedforward control
(18, 19, 25, 32, 75). Analogously, a single sc injec-
tion of testosterone in the adult ovariectomized rat
will induce a masculine-like pattern of more regular
GH release (lower ApEn) within 48 h (76). 
In the more subtle context of healthy aging, regu-
larity estimates unveil attenuation of the orderliness
of each of GH, LH, ACTH and insulin in men and
women (2, 40, 64, 69, 77-79). Assessment of the
joint synchrony (cross-ApEn) of coupled hormone
releases further establishes aging-related deterio-
ration of feedback-linked hormone release, i.e., 
decreased coordinate LH-FSH, LH-testosterone,
LH-prolactin, ACTH-cortisol and glucose-insulin 
secretory patterns (64, 69, 70, 79-84). Certain body-
compositional correlates, such as visceral adiposity,
also forecast feedback disruption (elevated ApEn)
within the GH axis at any given range (40, 48, 85). 

Validation of feedback quantitation
The emergent precept that greater subpattern 
randomness (orderliness loss) signifies alterations in
regulatory linkages in a coupled network has been
validated by way of: a) mathematically reductionistic
(coupled stochastic) numerical systems; b) clinical in-
terventional paradigms, comprising: 1) fixed feedfor-
ward enforced by iv infusion of GHRH, GHRP-2 and
GnRH, 2) withdrawal of feedback signals to GH,
ACTH and LH output by pharmacological depletion
of downstream products, IGF-I, cortisol and testos-
terone, and 3) accentuation of feedback by constant
iv infusion of testosterone, IGF-I or somatostatin; c)
formalized models of ensemble neuroendocrine con-
trol (5, 11, 12, 65-67, 86-90); d) demonstrated re-
versibility of secretory irregularity by surgical cure of
autonomous endocrine tumors (above). 
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Fig. 5 - Intuitive concept of subpattern regularity in a 
hormone profile, as quantitated by the approximate entropy
(ApEn) statistic.
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TRIPEPTIDYL MODEL OF GH
NEUROREGULATION

Multiple effectors modulate GH secretion singly and
interactively. Important regulatory inputs include
(non-exclusively) direct somatotrope inhibition by
systemic free fatty acids; hypothalamic signaling via
the 3 pivotal neuropeptides, GHRH, GHRP/ghrelin
and somatostatin; and hypothalamo-pituitary feed-
back by GH and IGF-I (2). Inasmuch as the full reper-
toire of potential agonists and antagonists of GH syn-

thesis and/or release is formidable, we proposed a
simplified tripeptidyl model that embodies conver-
gent (final-common) signaling by the ensemble of
GHRH, GHRP and somatostatin (2, 28, 33, 34, 
56, 91) (Fig. 6). The ensemble concept specifically
encapsulates reciprocal interactions among GHRH,
GHRP/ghrelin and somatostatin and autonegative
feedback by GH and IGF-I. The central thesis is that
no single peptide acts in isolation. Rather, GH 
secretion is governed by recurrent, incremental, con-
centration-dependent, time-varying homologous
and heterologous interactions among members of
the axis (5-8).
Genetic silencing of individual signaling pathways 
establishes that GHRH feedforward, GHRP/ghrelin
drive and somatostatin inhibition are crucial compo-
nents of the core GH/IGF-I regulatory network. In par-
ticular, in the human, rare mutation of the GHRH-re-
ceptor gene reduces GH secretory-burst mass (and
thereby daily GH secretion) by >30 fold, but does not
alter GH pulse frequency or extinguish 24-h rhyth-
micity (92) (Fig. 7). As predicted by ApEn-based reg-
ularity concepts, interruption of GHRH-receptor sig-
naling disrupts GH subpattern irregularity profound-
ly (>5 SDs from normal). In the mouse, transgenic 
repression of the hypothalamic GHRP (ghrelin) 
receptor diminishes food intake, reduces visceral fat
mass and retards juvenile somatic growth in both sex-
es, but suppresses GH and IGF-I concentrations and

Primary peptidyl regulation of GH/IGF-I axis
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GH secretory patterns only in the female animal (93).
Additional studies will be needed to define whether
the latter distinction reflects a true gender contrast
or unknown experimental factors (e.g. transgene
dosage or strain background). Transgenic quenching
of somatostatin-gene expression feminizes GH 
secretory patterns and hepatic sex-specific gene tran-
scription. Lastly, loss-of-function mutations of the GH
receptor and a single clinical example of IGF-I gene
deletion establish the role of GH and IGF-I in feed-
back control (2). 
Tripeptide control is mediated by homologous and
heterologous effector-receptor interactions (Fig. 6).
For example, GHRH stimulates pituitary ghrelin
gene expression; intrahypothalamic somatostatin
represses GHRH release; and ghrelin synergizes
with GHRH and antagonizes somatostatin action.
Wherever studied in detail, such interactions are
dynamic, i.e., time-sensitive, dose-dependent, gen-
der-modulated and developmentally regulated. 

ESTROGENIC MODULATION OF TRIPEPTIDYL
CONTROL

Clinical studies establish that estrogen is a dominant
positive determinant of pulsatile GH secretion (1, 10,
34, 45, 94). Oral estradiol administration (in doses 
designed to emulate concentrations typical of the late
follicular phase of the menstrual cycle) doubles GH
secretory-burst mass and the (daily) GH secretion rate
in ovariprival girls and women (18, 25, 95). The oral
route is not singular in stimulatory efficacy, since 
review of extensive literature shows that oral, higher-
dose transdermal, intranasal, im, iv and intravaginal
delivery of diverse estrogens in women and oral 
administration of diethylstilbestrol and im injection of
estradiol polyphosphate in men elevate GH concen-
trations and reduce or do not alter systemic IGF-I con-
centrations in all age groups examined (33, 34, 91,
96). In contrast, states of endogenous estrogen re-
pletion, such as the late follicular phase of the nor-
mal or (exogenously) induced menstrual cycle and
puberty in girls, are marked by concurrent increments
in GH and IGF-I concentrations (10, 75, 97). The ba-
sis for the latter disparity is not fully explained. One
clue may be that (oral) estradiol administration ele-
vates IGF-binding protein-1 (IGFBP-1) concentrations
(98), which would predictably reduce free IGF-I avail-
ability further and unleash GH secretion by feedback
withdrawal. Indeed, experimental (non-estrogen-de-
pendent) suppression of plasma IGF-I concentrations
by pharmacological blockade of GH-receptor func-
tion doubles pulsatile (and basal) GH secretion in
young adults (36). A second observation is that sys-
temic estrogen administration does not stimulate

(hepatic) IGFBP-3 production despite clearly aug-
menting GH drive (46, 98). This response dissociation
is consistent with relative (hepatic) resistance to GH
action, as inferred following high-dose estradiol ex-
posure in the rat and rabbit (2, 39). A third evident
distinction is that only (endogenous) estrogen secre-
tion is characterized by concomitant ovarian produc-
tion of androgen and (in the luteal phase) proges-
terone. In this regard, combined supplementation
with estrogen and a synthetic progestin elevates both
GH and IGF-I concentrations (2, 33, 34, 91). However,
synthetic progestins in these contexts could act via
the androgen and/or progesterone receptor. 
Estrogen selectively stimulates GH secretory-burst
mass and, thereby, elevates the incremental and
absolute height of serum GH concentrations 
(16, 18, 25, 95). According to the foregoing sim-
plified 3-peptide model, estrogen’s amplification
of GH secretory-burst mass would denote mod-
ulation of single or conjoint signaling by GHRH,
GHRP/ghrelin, somatostatin and/or GH and 
IGF-I-enforced negative feedback (Fig. 2). Indeed,
recent mechanistic experiments establish that
estradiol repletion impacts all 5 regulatory mech-
anisms (41, 46, 99-102). 

GHRH
In the rodent, estrogen represses the expression of
GHRH peptide and the GHRH receptor (34).
Inferences concerning sex-steroid control of ex-
ogenous GHRH feedforward drive in the human
have been less consistent (96). We reasoned that
earlier discrepancies may reflect variable cohort se-
lection, choice of GHRH dose, concomitant so-
matostatin outflow and method of analysis (91, 94).
As complementary strategies to address the impact
of estradiol on (exogenous) GHRH action, we have
utilized: a) continuous 24-h infusion of rh GHRH-1,
44-amide at a near-maximally effective dose to ex-
plore maximal agonist actions; b) acute L-arginine
pretreatment to limit endogenous somatostatin in-
hibition during separate-day, randomly ordered, sin-
gle-bolus injection of a 300-fold dose range of
biosynthetic GHRH-1,44-amide in a within-subject
crossover design; c) baseline-corrected and kineti-
cally adjusted (deconvolution quantitation of) GH
secretory-burst mass (μg/l of distribution volume)
(21, 38, 40, 100). 
Figure 8 illustrates 24-h serum GH concentration
profiles monitored after randomly ordered place-
bo and estradiol supplementation along with con-
stant iv infusion of saline or rh GHRH-1,44-amide
(1 μg/kg/h). Notably, continuous near-maximal
GHRH stimulation drives pulsatile and entropic GH
secretion markedly, and estrogen repletion fails to
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affect either response (38). Bolus injection of single
GHRH pulses in the somatostatin-withdrawn con-
text augments GH secretory-burst mass dose-
dependently (100). In this context, estrogen sup-

plementation does not augment the maximal effect
of GHRH, but amplifies: a) pituitary sensitivity to
GHRH (defined by 2-fold elevation of the maximal
slope of the dose-response function); b) GHRH po-
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tency (identified by a 53% reduction in the half-
maximally effective dose, ED50 of GHRH) (38, 100).
The foregoing observations offer an explanation for
some of the reported disparities in estrogenic mod-
ulation of GHRH action, inasmuch as: a) estradiol
does not facilitate a maximal GHRH stimulus; 
b) estradiol potentiates a submaximally effective
(physiologically attainable) GHRH signal; c) L-argi-
nine pretreatment may be required to limit GH se-
cretory-response variability to GHRH injection.
Whether testosterone heightens GHRH feedfor-
ward by analogous sensitization is not known. 

GHRP (ghrelin)
Continuous iv infusion of a high dose of GHRP-2 
(1 μg/kg/h) for 24 h markedly amplifies all 3 of pul-
satile, entropic and nycthemerally rhythmic GH se-
cretions (37) (Fig. 8). This tripartite neurosecretory
response emulates that induced by GHRH as well
as that observed in normal midpuberty in boys and
girls (15, 17, 28, 38, 73). 
Administration of estrogen or testosterone aug-
ments apparent efficacy of synthetic GHRPs (103-
105). The term “apparent efficacy” is appropriate
at present, since a GHRP-2 dose-response analysis
indicates that an unequivocally maximal secretory
response is not demonstrable following injection of
the highest evaluable dose (3 μg/kg) (41) (Fig. 9).
Supplementation with estradiol potentiated the
stimulatory effect of the last dose by 1.8-fold.
Comparable studies will be important to conduct
with the endogenous GHRP-receptor ligand, ghre-
lin. Moreover, the mechanisms mediating this strik-
ing action of estrogen will be meritorious to dissect
(33, 41). A plausible clinical hypothesis is that estra-
diol induces the expression of hypothalamo-pitu-

itary GHRP receptors, as reported by in vitro tran-
scriptional assay (106, 107). 

Somatostatin
The impact of sex steroids on somatostatin synthe-
sis, release and action is complex and incompletely
understood. In the rodent, testosterone or 5�-dihy-
drotestosterone induces, and orchidectomy repress-
es, periventricular-nuclear somatostatin gene ex-
pression. In the rat, estradiol does not mimic the an-
drogenic effect consistently (2). On the other hand,
estradiol enhances submaximal L-arginine-stimulat-
ed GH release in the human (100). Assuming that this
amino acid reduces hypothalamic outflow of so-
matostatin, the latter effect would denote that estro-
gen does not act exclusively by withdrawing so-
matostatin restraint. However, whether estrogen al-
ters somatostatin release in the human is not known. 
According to a tripeptidyl regulatory model, muting
of somatostatinergic inhibition would further ampli-
fy (non-maximal) GH secretion driven by a combined
GHRH/GHRP stimulus (34). We tested this concept
by simultaneous infusion of GHRH and GHRP-2 
(1 μg/kg/h each) for 24 h in post-menopausal wom-
en during (randomly ordered) estrogen withdrawal
and supplementation. In this unique setting, estra-
diol increases daily total, pulsatile and basal (non-
pulsatile) GH secretion significantly by within-subject
paired comparison (39) (Fig. 8). These data, if cor-
roborated, would indicate that estradiol can repress
hypothalamic somatostatin release or directly stimu-
late somatotropes (33). In addition, in the same set-
ting, estradiol elevates GH ApEn and 24-h rhythmic
GH release (technically defined by the mesor of the
nycthemeral rhythm) (38). Mechanistically, such out-
comes could reflect facilitation of GHRP action (38),
enhancement of GHRH drive (100), disinhibition of
GH autofeedback (46) and/or antagonism of so-
matostatin restraint (99). 
In relation to somatostatin action, a recent clinical
study disclosed that estradiol supplementation in
postmenopausal women reduces the inhibitory 
potency (ID50) of and blunts somatotrope sensitivi-
ty to somatostatin, but does not attenuate sup-
pressive efficacy (99) (Fig. 10). The latter distinction
is important, since it affirms estrogenic determina-
tion of physiological rather than pharmacological
effects of somatostatin.

IMPACT OF AROMATIZABLE ANDROGEN

Testosterone repletion in puberty, hypogonadal
boys and older men stimulates GH secretory-burst
mass, increases pattern irregularity (ApEn) and
heightens 24-h rhythmicity (19, 25, 29, 31, 32).
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These effects are not observed in eugonadal
young men even in the face of pharmacological
serum total testosterone concentrations (e.g., 
1000 to 1500 ng/dl) (19, 75). Other studies illus-
trate certain salient differences between the 
actions of exogenous testosterone and estrogen: 
a) only testosterone significantly (and consistent-
ly) increases plasma total IGF-I concentrations (34,
35); b) testosterone elevates underlying basal (non-
pulsatile) GH release; c) oral estradiol, but not par-
enteral testosterone, increases serum IGFBP-1
concentrations (19, 41). Testosterone-dependent
stimulation of IGF-I production requires augmen-
tation of GH secretion, but is independent of
ageor genotype (2, 34). In contrast, neither estro-
gen alone nor a non-aromatizable androgen (such
as 5�-dihydrotestosterone, fluoxymesterone or
stanozolol) uniformly elevates IGF-I concentrations
(25, 75). One plausible hypothesis to account for
distinguishable effects of systemic estrogen and
testosterone on IGF-I production, basal GH se-
cretion and IGFBP-1 concentrations is that in situ
aromatization of testosterone to estradiol (but not
systemic delivery of estrogen) directs specific sig-
naling pathways by attaining high local concen-
trations (33, 34, 94). 

GH-DEPENDENT AUTOFEEDBACK
Impact of estrogen
Compared with the male, the adult female rat is 
resistant (but not insensitive) to GH autonegative
feedback (2). In the human, gender and pubertal
status impact GH autofeedback in a unique fashion.
In particular, a single iv pulse of rh GH inhibits
GHRH-stimulated and spontaneous pulsatile GH 

secretion consistently (by 50-70%) in pre-, mid- and
post-pubertal boys, young women, postmenopausal
individuals, and young and older men (28, 46, 101).
Inhibition of spontaneous and exercise-stimulated
GH secretion in young women and men is propor-
tionate to dose of recombinant human (rh) GH over
the range 1, 3 and 10 μg/kg (101). Gender compar-
isons reveal that men exhibit greater sensitivity to
autofeedback inhibition than women, antipodal to
the sex difference in the rodent (2). On the other
hand, estradiol administration in postmenopausal
women blunts GH-enforced negative feedback
specifically on the GHRP-2 stimulus (but not on
basal, exercise or GHRH-induced GH release) (46).
Further complexity of sex-steroid control is evident
in the recent clinical finding that administration of
estradiol accentuates inhibition by rh IGF-I of spon-
taneous and GHRH-stimulated GH secretion (102).
A plausible but unproven central mechanism for the
last observation is the experimental capability of 
estrogen to upregulate expression of the pituitary
Type 1 IGF receptor (108). 

Impact of puberty
Puberty is remarkable by way of combined elevations
in GH and IGF-I production (15, 17, 29). This circum-
stance also prevails in the late follicular phase of men-
strual cycle and in pathological hypersomatotropism
(60, 109, 110). Simultaneously increased secretion of
a trophic hormone and the feedback product would
point mechanistically to: a) autonomous feedforward
drive (e.g., by fixed secretagogue infusion or unreg-
ulated hormone release by an endocrine tumor); 
b) impairment of central reception of the feedback
signal (e.g., due to a genetic GH-receptor defect); 
c) attenuation of the central inhibitory response-ef-
fector mechanism, despite a normal feedback signal
(e.g., transgenic silencing of somatostatin receptor
subtype 2); d) disruption of the feedback signal prop-
er (e.g., mutation of the GH protein). Plausible
testable bases for the simultaneous increase in GH
and IGF-I concentrations in puberty are heightened
hypothalamic drive and blunted IGF-I and/or GH-de-
pendent autonegative feedback. Investigation of
these conjectures in healthy boys yielded 3 novel 
insights. First, a single pulse of rh GH inhibits GHRH-
stimulated GH release equivalently in all 3 of prepu-
bertal boys, midpubertal boys and young men (28).
This outcome signifies comparable rh GH-induced
somatostatin outflow across adolescent development.
Secondly, infused GH suppresses spontaneous GH
secretion both fractionally (%) and decrementally
(μg/l) more in midpuberty than in the child or adult.
This mode of autofeedback could create marked
downswings after GH pulses. Moreover, in view of 
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inferentially equivalent GH-enforced somatostatin
outflow, the later feature in mid-adolescence may 
denote greater feedback susceptibility of hypothala-
mic GHRH (and possibly ghrelin) release. And, third-
ly, the time-course of recovery of GH secretion after
maximal suppression is several-fold more rapid in
midpuberty than in childhood or adulthood (Fig. 11).
Accelerated resurgence of GH secretion after feed-
back repression could underlie prompt upswings in
GH concentrations after an endogenous pulse. The
basis for robust escape of GH pulsatility in mid-

puberty may include an abbreviated duration of 
somatostatin outflow and/or heightened secreta-
gogue drive. 

FEEDBACK RESTRAINT BY SYSTEMIC IGF-I
CONCENTRATIONS

Systemic IGF-I depletion typically unleashes GH 
secretion, as observed in fasting, anorexia nervosa,
malabsorption, GH-receptor defects and rare dele-
tion of the IGF-I gene (2). However, the metabolic
complexity of these conditions limits the facile con-
clusion that IGF-I deprivation per se stimulates pul-
satile GH release. More explicitly, however, admin-
istration of a highly selective GH-receptor antago-
nist peptide (pegvisomant) suppresses serum (total)
IGF-I by 30% within 72 h and stimulates pulsatile (and
basal) GH secretion by 1.8-fold in healthy young men
and women (36, 52) (Fig. 12). There is no evident
gender difference in the GH response, but larger
study cohorts will be needed to verify this inference.
The mechanism of feedback unleashing by this
oligopegylated protein analog is not definitively in-
ferable as yet. For example, GH-receptor blockade
and IGF-I depletion both occur in this setting, either
or both of which changes may induce GH secretion.
Native GH molecules enter human cerebrospinal flu-
id, and act centrally via the cognate receptor to me-
diate autonegative feedback (2). Whether oligope-
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gylated drug or a sparing amount of depegylated
protein does likewise is not established clinically. 
In addition, large proteins, such as horseradish per-
oxidase, accumulate in the external median emi-
nence and arcuate (but not periventricular) nucleus
rapidly after systemic injection. The latter point is sig-
nificant in that the GH receptor is expressed on 
inhibitory somatostatinergic and NPYergic neurons in
the arcuate nucleus (2).

CONCLUSIONS

A basic tripeptidyl model of interactive control pro-
vides a platform for examining how gender and age
impact GHRH, GHRP/ghrelin and somatostatiner-
gic pathways and GH and IGF-I-dependent feed-
back. The present review highlights the utility of
this construct in beginning to parse the complex
mechanisms that mediate interactive control. 
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